


Outline

• TCP flow control
• TCP congestion control
• TCP congestion control wrap-up
• Router assisted congestion control



TCP header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



Recap: Sliding window

• Both sender and receiver maintain a window 
• Left edge of window:

 Sender: beginning of unacknowledged data
 Receiver: beginning of expected data

 First “hole” in received data
When sender gets ack, knows that receiver’s window has moved

• Right edge: Left edge + constant
 The constant is only limited by buffer size in the transport 

layer



Sliding window at sender

Sending process

First unACKed byte

Last byte 
can send

TCP

Last byte writtenPreviously
ACKed bytes

Buffer size (B)



Sliding window at receiver

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Received and 
ACKed

Buffer size (B)

Sender might overrun 
the receiver’s buffer



Fixed sliding window？

• Fixed sliding window
– Works well on reliable direct links

• Problem:
– Failure to receive ACK is taken as flow control indication
– The receiver can achieve flow control by stop sending ACK, 

but the sender can not distinguish between lost segment 
and flow control



Solution: Credit Scheme 

• Receiver advertises spare room (credits) using an 
“Advertised Window” (RWND) to prevent sender 
from overflowing its window
 Receiver indicates value of RWND in ACKs

 Sender ensures that the total number of bytes in flight 
<= RWND



Sliding window at receiver

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Buffer size (B)

RWND = B - (LastByteReceived - LastByteRead)



Sliding window at sender

Sending process

First unACKed byte

Last byte 
can send

TCP

Last byte written
RWND



Sliding window with flow control

• Sender: window advances when new data ACK’d
• Receiver: window advances as receiving process 

consumes data
• Receiver advertises to the sender where the receiver 

window currently ends (“righthand edge”)
 Sender agrees not to exceed this amount

• UDP does not have flow control 
 Data can be lost due to buffer overflow



Benefit of Credit Scheme

• Greater control on Internet

• Decouples flow control from ACK
– May ACK without granting credit

• Each octet has a sequence 
number

• Each transport segment has seq 
number, ack number and window 
size in header

Source port # Dest port #

32 bits

application
data 

(message)

other header fields

Sequence number
ACK number

Win size

TCP segment format



Use of Header Fields

• When sending a segment
– seq number (SN) is that of first octet in segment
– ACK includes AN=i, W=j

• All octets through SN=i–1 acknowledged
– Next expected octet is i

• Permission to send additional window of W=j octets
– i.e. octets from i to i+j–1



Credit Allocation Procedure
200 octets per segment



Credit allocation flow control
Credit allocation flow control mechanism
• Suppose that the last octet of data received by B was octet 

number i-1, and that the last segment issued by B was  (AN=i, W=j). 
Then
– To increase credit to an amount k (k>j) when no additional data have 

arrived, B issues (AN=i, W=k)

– To acknowledge an incoming segment containing m octets of data (m<j) 
without granting additional credit, B issues (AN=i+m, W=j-m)

• If an ACK/CREDIT segment is lost, little harm is done. Future 
acknowledgments will resynchronize the protocol. 

• Further, if the sender times out and retransmits a data segment, 
it triggers a new acknowledgment.



• Credit allocation deadlock
– B sends A: segment with AN=i, W=0 closing rcv-window
– B sends A: AN=i, W=j to reopen, but this maybe lost
– Now A thinks window is closed, B thinks it is open and wait

• Handle
– Use window timer
– If timer expires without any receiving, send something
– Could be re-transmission of previous segment



Outline

• TCP flow control
• TCP congestion control
• TCP congestion control wrap-up
• Router assisted congestion control



A story: Congestion collapse in 
1980s

• In 1981, TCP was standardized and widely deployed. 
• No congestion control is considered.

• In October of 1986, the Internet had the first of what 
became a series of ‘congestion collapses’. During this 
period, the data throughput from LBL to UC Berkeley 
(sites separated by 400 yards and two IMP hops) dropped 
from 32 Kbps to 40 bps. (Van Jacobson, Congestion 
Avoidance and Control)

• This open a new area of congestion control study.



Jacobson’s fix to TCP 

• Extend TCP’s existing window-based protocol but 
adapt the window size in response to congestion

• A pragmatic and effective solution 
 Required no upgrades to routers or applications!
 Patch of a few lines of code to TCP implementations

• Extensively researched and improved upon
 Especially now with datacenters and cloud services



Key design considerations

• How do we know the network is congested? 
• Implicit and/or explicit signals from the network

• Who takes care of congestion?
• End hosts (may receive some help from the network)

• How do we handle congestion?
• Continuous adaptation



Three issues to consider

• Discovering the available (bottleneck) bandwidth
• Adjusting to variations in bandwidth
• Sharing bandwidth between flows



Abstract view

• Ignore internal structure of router and model it as 
a single queue for a particular input-output pair

Sending Host Buffer in Router Receiving Host

A B



Discovering available bandwidth

100 Mbps

Sending Host Buffer in Router Receiving Host

A B

• Pick sending rate to match bottleneck bandwidth
 Without any a priori knowledge
 Could be gigabit link, could be a modem



Adjusting to variations in 
bandwidth

A BBW(t)

• Adjust rate to match instantaneous bandwidth
 Assuming you have rough idea of bandwidth



Multiple flows and sharing bandwidth

• Two Issues:
Adjust total sending rate to match bandwidth
Allocation of bandwidth between flows

A2 B2BW(t)

A1

A3 B3

B1



Reality

Congestion control is a resource allocation problem involving many 
flows, many links, and complicated global dynamics

1Gbps

600Mbps

1Gbps



Possible approaches

(0) Send without care
Many packet drops



Possible approaches

(0) Send without care
(1) Reservations

• Pre-arrange bandwidth allocations
• Requires negotiation before sending packets
• Low utilization



Possible approaches

(0) Send without care
(1) Reservations
(2) Pricing
Don’t drop packets for the high-bidders
 Requires payment model



Possible approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

• Hosts infer level of congestion; adjust 
• Network reports congestion level to hosts; hosts adjust
• Combinations of the above
• Simple to implement but suboptimal, messy dynamics



Possible approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

• Generality of dynamic adjustment has proven to 
be very powerful
 Doesn’t presume business model, traffic characteristics, 

application requirements
 But does assume good citizenship!



Two basic questions

• How does the sender detect congestion?
• How does the sender adjust its sending rate?
To address three issues

Finding available bottleneck bandwidth
Adjusting to bandwidth variations
Sharing bandwidth



Detecting congestion

• Packet delays 
 Tricky: noisy signal (delay often varies considerably)

• Routers tell end hosts when they’re congested

• Packet loss
 Fail-safe signal that TCP already has to detect
 Complication: non-congestive loss (e.g., checksum errors)



Not all losses are the same

• Duplicate ACKs: isolated loss
Still getting ACKs

• Timeout: much more serious
Not enough dupacks
Must have suffered several losses

• Will adjust rate differently for each case



Rate adjustment

• Basic structure
 Upon receipt of ACK (of new data): increase rate
 Upon detection of loss: decrease rate

• How we increase/decrease the rate depends on the 
phase of congestion control we’re in: 
 Discovering available bottleneck bandwidth 
   (Slow Start)
 Adjusting to bandwidth variations
   (Congestion Avoidance: AIMD)



Bandwidth discovery with “Slow Start”

• Goal: estimate available bandwidth 
 Start slow (for safety) 
 Ramp up quickly (for efficiency) 

• Consider
 RTT = 100ms, MSS=1000bytes
 Window size to fill 1Mbps of BW = 12.5 packets
 Window size to fill 1Gbps = 12,500 packets
 Either is possible! 



Slow Start phase

• Sender starts at a slow rate, but increases 
exponentially until first loss

• Start with a small congestion window
Initially, CWND = 1
So, initial sending rate is MSS/RTT

• Double the CWND for each RTT with no loss 



Slow Start in action

• For each RTT: double CWND
 i.e., for each ACK, CWND += 1

Linear increase per ACK(CWND+1)  
exponential increase per RTT (2*CWND)



Slow Start in action

• For each RTT: double CWND
• i.e., for each ACK, CWND += 1

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8



When does Slow Start stop?

• Slow Start gives an estimate of available bandwidth
 At some point, there will be loss

• Introduce a “slow start threshold” (ssthresh)
 Initialized to a large value

• If CWND > ssthresh, stop Slow Start



Adjusting to varying bandwidth

• CWND > ssthresh
 Stop rapid growth and focus on maintenance

• Now, want to track variations in this available 
bandwidth, oscillating around its current value
 Repeated probing (rate increase) and backoff (decrease)

• TCP uses: “Additive Increase Multiplicative Decrease” 
(AIMD)



AIMD
• Additive increase: when CWND> ssthresh

 For each ACK, CWND = CWND+ 1/CWND
 CWND is increased by one only if all segments in a CWND have been 

acknowledged 

• Multiplicative decrease

• On 3 duplicate ACKs (packet loss event)
 ssthresh = CWND/2
 CWND= ssthresh
 Enter Congestion Avoidance: cwnd increases by 1 (linearly instead of 

exponentially) after each RTT

• On timeout event
 ssthresh = CWND/2
 CWND = 1
 Initiate Slow Start



Illustration of Window

ssthresh = cwnd/2

Timeout event: cwnd is set to 1 
and then slow start 



Leads to the TCP “Sawtooth”

Exponential
“slow start”

t

Window

AIMD saw tooth behavior:  
probing for bandwidth

Packet loss event: cut window in half 



Why AIMD?

• Recall the three issues
 Finding available bottleneck bandwidth
 Adjusting to bandwidth variations
 Sharing bandwidth

• Two goals for bandwidth sharing
 Efficiency: High utilization of link bandwidth
 Fairness: Each flow gets equal share



Why AIMD?

• Every RTT, we can do
 Multiplicative increase or decrease: CWND a*CWND
 Additive increase or decrease: CWND CWND + b

• Four alternatives:
 AIAD: gentle increase, gentle decrease
 AIMD: gentle increase, drastic decrease
 MIAD: drastic increase, gentle decrease
 MIMD: drastic increase and decrease



Simple model of congestion control

• Two users
 rates x1 and x2

• Congestion when 
x1+x2 > 1

• Unused capacity 
when x1+x2 < 1

• Fair when x1 =x2

User 1’s rate (x1)

U
se

r 
2’
s 

ra
te

 (
x 2

)

Fairness line
(x1 =x2)

Efficiency line
(x1+x2 = 1)

1

1

con
ges

ted
 


 in

eff
icie

nt



Example

User 1: x1

U
se

r 
2:

 x
2

Fairness
line

Efficiency
line

1

1

Inefficient: x1+x2=0.7 

(0.2, 0.5)

Congested: x1+x2=1.2 

(0.7, 0.5)

Efficient: x1+x2=1
Fair 

(0.5, 0.5)

con
ges

ted
 


 in

eff
icie

ntEfficient: x1+x2=1
Not fair 

(0.7, 0.3)



AIMD

(bDx1+aI,
bDx2+aI)

• Increase: x+aI

• Decrease: x*bD

• Converges to 
fairness

(x1,x2)

(bDx1,bDx2)

con
ges

ted
 


 in

eff
icie

nt

Fairness
line

Efficiency
line

User 1: x1

U
se

r 
2:

 x
2



AIMD Sharing Dynamics

0

10

20

30

40

50

60

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

A
50 packets/sec

Bx1

D E

Rates equalize  fair share

x2



Outline

• TCP flow control
• TCP congestion control
• TCP congestion control wrap-up
• Router assisted congestion control



Fast recovery
• Idea: Grant the sender temporary “credit” for each 

dupACK so as to keep packets in flight

• If dupACKcount = 3 
  ssthresh = CWND/2
  CWND = ssthresh + 3

• While in fast recovery
 CWND = CWND + 1 for each additional dupACK

• Exit fast recovery after receiving new ACK
 set CWND = ssthresh



Example

• Consider a TCP connection with:
 CWND=10 packets
 Last ACK was for packet # 101

 i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight
 Packet 101 is dropped



Timeline: [101, 102, …, 110]✗
• ACK 101 (due to 102)  cwnd=10  dup#1
• ACK 101 (due to 103)  cwnd=10  dup#2
• ACK 101 (due to 104)  cwnd=10  dup#3
• RETRANSMIT 101 ssthresh=5  cwnd= 8 (5+3)
• ACK 101 (due to 105)  cwnd= 9 (no xmit)
• ACK 101 (due to 106)  cwnd=10 (no xmit)
• ACK 101 (due to 107)  cwnd=11 (xmit 111)
• ACK 101 (due to 108)  cwnd=12 (xmit 112)
• ACK 101 (due to 109)  cwnd=13 (xmit 113)
• ACK 101 (due to 110)  cwnd=14 (xmit 114)
• ACK 111 (due to 101) cwnd = 5 (xmit 115)   exiting fast recovery
• Packets 111-114 already in flight
• ACK 112 (due to 111) cwnd = 5 + 1/5   back in cong. avoidance



TCP state machine

Slow 
Start

Cong. 
Avoid.

Fast 
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new 
ACKdupACK

dupACK



Timeouts ➔ Slow Start

Slow 
Start

Cong. 
Avoid.

Fast 
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new 
ACKdupACK

dupACK



dupACKs ➔ Fast Recovery

Slow 
Start

Cong. 
Avoid.

Fast 
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new 
ACKdupACK

dupACK



New ACK changes state ONLY from Fast 
Recovery

Slow 
Start

Cong. 
Avoid.

Fast 
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new 
ACKdupACK

dupACK



TCP state machine

Slow 
Start

Cong. 
Avoid.

Fast 
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new 
ACKdupACK

dupACK



Timeout and Dup-ack



TCP flavors 

• TCP-Tahoe
 CWND =1 on 3 dupACKs

• TCP-Reno
 CWND =1 on timeout
 CWND = CWND/2 on 3 dupACKs

• TCP-newReno
 TCP-Reno + improved fast recovery

• TCP-SACK
 Incorporates selective acknowledgements 

Our default 
assumption



How can they coexist? 

• All follow the same principle
• Increase CWND on good news
• Decrease CWND on bad news



Outline

• TCP flow control
• TCP congestion control
• TCP congestion control wrap-up
• Router assisted congestion control



Recap: TCP problems

• Misled by non-congestion losses

• Fills up queues leading to high delays

• Short flows complete before discovering available capacity

• AIMD impractical for high speed links 

• Saw tooth discovery too choppy for some apps

• Unfair under heterogeneous RTTs

• Tight coupling with reliability mechanisms

• End hosts can cheat

Routers tell endpoints 
  if they’re congested

Routers tell 
endpoints what 
rate to send at

Routers enforce
fair sharing

Could fix many of these with some help from routers!



Mechanisms for Congestion Control

 Choke Packet
 Backpressure
 Warning bit
 Random early discard
 Fair Queuing (FQ) 

• 抑制分组
• 反压
• 警告位
• 随机早期丢弃
• 公平队列



Warning Bit 

Explicit Congestion Notification (ECN)

• Single bit in packet header; set by congested routers
 If data packet has bit set, then ACK has ECN bit set

• Many options for when routers set the bit
 Tradeoff between (link) utilization and (packet) delay

• Congestion semantics can be exactly like that of drop
 i.e., end-host reacts as though it saw a drop



ECN

• Advantages:
 Don’t confuse corruption with congestion; recovery w/ rate 

adjustment
 Can serve as an early indicator of congestion to avoid delays
 Easy (easier) to incrementally deploy 

 Today: defined in RFC 3168 using ToS/DSCP bits in the IP header
 Common in datacenters



提问

Q & A 


