Ghiks

NANJING UNIVERSITY

TCP flow control

TCP congestion control

TCP congestion control wrap-up
Router assisted congestion control

st= TCP header

Source port Destination port

Sequence number

Acknowledgment

&ver“rlsed wmdlow/>

e ——

HdrLen| 0 | Flags ¢

Checksum Urgent pointer

Options (variable)

Recap: Sliding window

o Tl P
rrrrrry M g
B, A e
R N o <

 Both sender and receiver maintain a window

 Left edge of window:
» Sender: beginning of unacknowledged data

> Receiver: beginning of expected data
v First “hole" in received data
v When sender gets ack, knows that receiver's window has moved

* Right edge: Left edge + constant

> The constant is only limited by buffer size in the transport
layer

Tl P
Eerrrrrryty Mo dr g v
L W T e B
TaTRs i 3

TcP Buffer sizeNB)

W Lastbyte written

Previously __ |
ACKed bytes K |

A

First unACKed byte

Last byte
can send

W

o T
e e B)

. Sliding window at receiver

Receiving process

Last byte read Buffer size (B

Receivedand — — Y (
ACKed

Sender might overrun

Next byte needed the receiver's buffer

(1st byte not received)

Last byte received

Fixed sliding window?

iy

S T e A

 Fixed sliding window
— Works well on reliable direct links

* Problem:
— Failure to receive ACK is taken as flow control indication

— The receiver can achieve flow control by stop sending ACK,
but the sender can not distinguish between lost segment
and flow control

Receiver advertises spare room (credits) using an
"Advertised Window" (RWND) to prevent sender
from overflowing its window

> Receiver indicates value of RWND in ACKs

» Sender ensures that the total number of bytes in flight
<= RWND

=
:—-""éfﬁ;?'-ﬁ’;
S D) s

\

Next byte needed
(1st byte not received)

Last byte received

TCP
RWND

First unACKed byte

Last byte
can send

e Sliding window with flow control

« B g,
A R e A B

« Sender: window advances when new data ACK'd

 Receiver: window advances as receiving process
consumes data

« Receiver advertises to the sender where the receiver
window currently ends (“righthand edge™)
> Sender agrees not to exceed this amount
« UDP does not have flow control
> Data can be lost due to buffer overflow

W & = ...,...
X ik .“*é_ie-‘-?l

. Benefit of Credit Scheme

* Greater control on Internet

« Decouples flow control from ACK
— May ACK without granting credit

« Each octet has a sequence
number

« Each transport segment has seq
number, ack number and window
size in header

32 bits

Source port # Dest port #

Sequence number

ACK number

Win size

other header fields

application
data

(message)

TCP segment format
© ik Z

IIIIIIIIIIIIIIIIIII

= Use of Header Fields

Fma s YD S

When sending a segment

— seq number (SN) is that of first octet in segment
— ACK includes AN=i, W=

All octets through SN=i-1 acknowledged

— Next expected octet is i

Permission to send additional window of W=j octets
— i.e. octets from i to i+j-1

Credit Allocation Procedure

Transport Entity A

L A000] 1001 24001 2401,
A may send 1400 octeis
IS T T 1641 2401,

A shrinks its transmit window with each

transmission
e DM 10T 2K 240...
LM 1601 2K ...

A adjusts its window with each credit

L IG0H 1601

P11

2o, ..

A exhavsts its credit

200 2601

GO0 W, ..

A receives new credit

200 octets per segment

%

Transport Entity B

P L i | Z400| 2401,

13 is prepared o receive 1400 octets,
beginning with 1001

o DG 1G0T 201

B acknowledges 3 segments (600 octets), but is only
prepared to receive 200 additional octets beyond the
original budget (i.e., B will accept octets 1601
through 2600}

L6600 2 2061,

.. 260 | 2601 JUHHD | UMb ...

B acknowledges 5 segments { 1IN octets) and
restores the original amount of credit

hikZ

NANJING UNIVERSITY

= Credit allocation flow control

Credit allocation flow control mechanism

« Suppose that the last octet of data received by B was octet
number i-1, and that the last segment issued by B was (AN=i, W=j).
Then

— To increase credit to an amount k (k>j) when no additional data have
arrived, B issues (AN=i, W=k)

— To acknowledge an incoming segment containing m octets of data (m«j)
without granting additional credit, B issues (AN=i+m, W=j-m)

« If an ACK/CREDIT segment is lost, little harm is done. Future
acknowledgments will resynchronize the protocol.

* Further, if the sender times out and retransmits a data segment,
it triggers a new acknowledgment.

 Credit allocation deadlock
— B sends A: segment with AN=i, W=0 closing rcv-window
— B sends A: AN=i, W=j to reopen, but this maybe lost
— Now A thinks window is closed, B thinks it is open and wait

 Handle

— Use window timer
— If timer expires without any receiving, send something
— Could be re-transmission of previous segment

« TCP flow control

TCP congestion control

« TCP congestion control wrap-up

« Router assisted congestion control

e J&

1980s
« In 1981, TCP was standardized and widely deployed.
« No congestion control is considered.

== A story: Congestion collapse in

e« In October of 1986, the Internet had the first of what
became a series of 'con%es‘rion collapses’. During this
period, the data throughput from LBL to UC Berkeley
gsi‘res separated bé 400 yards and two IMP hops) dropped

rom 32 Kbps to 40 bps. (Van Jacobson, Congestion
Avoidance and Control)

 This open a new area of congestion control study.

=, Jacobson's fix to TCP

Extend TCP's existing window-based protocol but
adapt the window size in response to congestion

A pragmatic and effective solution
» Required no upgrades to routers or applications!
» Patch of a few lines of code to TCP implementations

Extensively researched and improved upon
> Especially now with datacenters and cloud services

=z Key design considerations

Fma s YD S

How do we know the network is congested?
« Implicit and/or explicit signals from the network

Who takes care of congestion?
 End hosts (may receive some help from the network)

How do we handle congestion?
« Continuous adaptation

s I hree issues to consider

 Discovering the available (bottleneck) bandwidth
« Adjusting to variations in bandwidth
* Sharing bandwidth between flows

A = 1B

Sending Host Buffer in Router Receiving Host

« Ignore internal structure of router and model it as
a single queue for a particular input-output pair

s Discovering available bandwidth

4 e o T,
B P A O S

100 Mb
A = =B

Sending Host Buffer in Router Receiving Host

» Pick sending rate to match bottleneck bandwidth
> Without any a priori knowledge
» Could be gigabit link, could be a modem

A= Adjusting to variations in
" bandwidth

BW(+)

A

« Adjust rate to match instantaneous bandwidth
» Assuming you have rough idea of bandwidth

Ty 7~ ’L

Y- (74

E, f“ N)
NANJING UNIVERSITY

W

S
LS AT L
T T .“‘é_ie-‘fi

Multiple flows and sharing bandwidth

« Two Issues:
» Adjust total sending rate to match bandwidth
> Allocation of bandwidth between flows

Al /@
AZ BW(1) > R BZ

A3 B3

LF

U gl
it Ak B

16bp 1Gbps !

3 600Mbps

Congestion control is a resource allocation problem involving many
flows, many links, and complicated global dynamics &

NANJING UNIVERSITY

«= Possible approaches

(0) Send without care
B Many packet drops

#=w= Possible approaches

SRR

(0) Send without care

(1) Reservations
* Pre-arrange bandwidth allocations
* Requires negotiation before sending packets
 Low utilization

= Possible approaches

(O) Send without care

(1) Reservations

(2) Pricing
B Don't drop packets for the high-bidders
B Requires payment model

= Possible approaches

(O) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment
* Hosts infer level of congestion; adjust
« Network reports congestion level to hosts; hosts adjust

« Combinations of the above
« Simple to implement but suboptimal, messy dynamics

= Possible approaches

(0) Send without care
(1) Reservations

(2) Pricing
(3) Dynamic Adjustment

 Generality of dynamic adjustment has proven to
be very powerful

» Doesn't presume business model, traffic characteristics,
application requirements

» But does assume good citizenship!

@ﬁikﬁ

VVVVVVVVVVVVVVVVVVV

= Two basic questions

S P hpet

« How does the sender detect congestion?

* How does the sender adjust its sending rate?

» To address three issues
v'Finding available bottleneck bandwidth
v'Adjusting to bandwidth variations
v' Sharing bandwidth

=z Detecting congestion

N I S

 Packet delays
» Tricky: noisy signal (delay often varies considerably)

* Routers tell end hosts when they're congested

 Packet loss
> Fail-safe signal that TCP already has to detect
» Complication: non-congestive loss (e.g., checksum errors)

* Duplicate ACKs: isolated loss
> Still getting ACKs

* Timeout: much more serious
» Not enough dupacks
> Must have suffered several losses

» Will adjust rate differently for each case

R) J,

. N 3

Baikd
NANJING UNIVERS

»
SITY

Rate adjustment

e e P
P S Sie A

* Basic structure
> Upon receipt of ACK (of new data): increase rate
» Upon detection of loss: decrease rate

« How we increase/decrease the rate depends on the
phase of congestion control we're in:
» Discovering available bottleneck bandwidth
(Slow Start)
» Adjusting to bandwidth variations
(Congestion Avoidance: AIMD)

sz Bandwidth discovery with "Slow Start”

Fma s YD S

« Goal: estimate available bandwidth
» Start slow (for safety)
» Ramp up quickly (for efficiency)

 Consider
> RTT = 100ms, M55=1000bytes
» Window size to fill IMbps of BW = 12.5 packets
» Window size to fill 16bps = 12,500 packets
> Either is possiblel

== Slow Start phase

« Sender starts at a slow rate, but increases
exponentially until first loss

« Start with a small congestion window
> Initially, CWND = 1
» So, initial sending rate is MSS/RTT

* Double the CWND for each RTT with no loss
@ﬁik%

VVVVVVVVVVVVVVVVVVV

= Slow Start in action

o B3)
IS i OITh s

e For each RTT: double CWND
>i.e. for each ACK, CWND +=1

Linear increase per ACK(CWND+1) =

exponential increase per RTT (2*CWND)

Ty 7~ J,

. N 3

Gaikg
NANJING UNIVERS

»
SITY

 For each RTT: double CWND
* i.e., foreach ACK, CWND +=1

1 2 :

Spc _HH oo ‘ : - -- &

D A D\ D A/A/ D\D\ D\ D
5
Dest

= When does Slow Start stop?

e e el

Slow Start gives an estimate of available bandwidth
» At some point, there will be loss

Introduce a "slow start threshold" (ssthresh)
> Initialized to a large value

If CWND > ssthresh, stop Slow Start

s Adjusting to varying bandwidth

Iz S i

« CWND > ssthresh

» Stop rapid growth and focus on maintenance

* Now, want to track variations in this available
bandwidth, oscillating around its current value
» Repeated probing (rate increase) and backoff (decrease)

« TCP uses: "Additive Increase Multiplicative Decrease”
(AIMD)

« Additive increase: when CWND> ssthresh
> For each ACK, CWND = CWND+ 1/CWND

> CWND is increased by one only if all segments in a CWND have been
acknowledged

« Multiplicative decrease

« On 3 duplicate ACKs (packet loss event)
> ssthresh = CWND/2
> CWND-= ssthresh

» Enter Congestion Avoidance: cwnd increases by 1 (linearly instead of
exponentially) after each RTT

* On fimeout event
> ssthresh = CWND/2
> CWND-=1
> Initiate Slow Start

Illustration of Window

20 [i Timeout event: cwnd is set to 1
l timeout | and then slow start
I /occurs)
15 [ssthresh = cwnd/2
i
£ 10

threshold

{} W
0 1 2 4 5 6 (7 8 9 10/11 12 13 14 15 16
Roynd-trip times

Figure 17.14 IMustration oil Slow Startlan Congestion Avoidancd

i’ﬁ%\%

NANJING UNIVERSITY

. Leads to the TCP "Sawtooth”

T TTTTrY b, T ..
P S Sie A

Window

Packet loss event: cut window in half

l

Exponential T

slow start AIMD saw tooth behavior:
probing for bandwidth

s Why AIMD?

TaTRs Zai gt RO o

 Recall the three issues
» Finding available bottleneck bandwidth
» Adjusting to bandwidth variations
» Sharing bandwidth

« Two goals for bandwidth sharing
> Efficiency: High utilization of link bandwidth
> Fairness: Each flow gets equal share

Why AIMD?

o Tl P
STy Ml D)
- R e By

B T o g

» Every RTT, we can do
> Multiplicative increase or decrease: CWND— a*CWND
> Additive increase or decrease: CWND— CWND + b

* Four alternatives:
» ATAD: gentle increase, gentle decrease
» AIMD: gentle increase, drastic decrease
» MIAD: drastic increase, gentle decrease
» MIMD: drastic increase and decrease

e PP e

e M £ _._*...__-'
T

Simple model of congestion control

1 Efficiency line F)ir'ness line

« Two users X;+X, = 1) 7 (%1 =x7)
> rates x1 and x2 o~
X
: v
 Congestion when =
x1+x2 > 1 ;
« Unused capacity N
when x1+x2 < 1 S
L7
>

* Fair when x1 =x2

oty P R
o N ‘_4“:-‘&'

Example

Fairness

1
\ Efficient: X1+X,=1
Fair

User 2: x5

Inefficient: x;+x,=0.7 7/

[(0.2,0.5)
/7

4 Not fair

Efficient: xy+x,=1

/7 line

/
/

Congested: x;+x,=1.2

0.5, 0.5)

Efficiency
line

User 1. x;

S

NANJING UNIVERSITY

Increase: x+as
Decrease: x*by

Converges to
fairness

User 2: x,

Fairness
line

_ line

S

NANJING UNIVERSITY

s AIMD Sharing Dynamics

e il
PSP et o

/Xz; 50 packets/sec — E
50
40

A ‘ ‘ 4 4

SO A A A A A A A AN A A I AN KA AAAAA AL

20 1) / Rates equalize 2> fair share
jre

10

« TCP flow control

« TCP congestion control

TCP congestion control wrap-up

« Router assisted congestion control

s Fast recovery

N I S

« Idea: Grant the sender temporary "credit” for each
dupACK so as to keep packets in flight

« If dupACKcount = 3

» ssthresh = CWND/2
> CWND = ssthresh + 3

« While in fast recovery
» CWND = CWND + 1 for each additional dupACK

 Exit fast recovery after receiving new ACK
> set CWND = ssthresh

= Example

e Consider a TCP connection with:
» CWND=10 packets

> Last ACK was for packet # 101
v i.e., receiver expecting next packet to have seq. no. 101

« 10 packets [101, 102, 103,..., 110] are in flight
» Packet 101 is dropped

Timeline: [X01, 102, ..., 110]

« ACK 101 (due to 102) cwnd=10 dup#1

« ACK 101 (due to 103) cwnd=10 dup#?2

« ACK 101 (due to 104) cwnd=10 dup#3
RETRANSMIT 101 ssthresh=5 cwnd= 8 (5+3)

« ACK 101 (due to 105) cwnd= 9 (no xmit)

« ACK 101 (due to 106) cwnd=10 (ho xmit)

« ACK 101 (due to 107) cwnd=11 (xmit 111)

« ACK 101 (due to 108) cwnd=12 (xmit 112)

« ACK 101 (due to 109) cwnd=13 (xmit 113)

* ACK 101 (due to 110) cwnd=14 (xmit 114)
ACK 111 (due to 101) cwnd = 5 (xmit 115) € exiting fast recovery
Packets 111-114 already in flight

« ACK 112 (due to 111) cwnd = 5 + 1/5 € back in cong. avoidance

PP A 2
S . *u:"‘gl

TCP state machine

a.:ﬁ-

3 ; S .-..69‘,}:* 5 _s.

timeout

new

dupACK CWND > ssthresh ACK

timeout

dupACK
new ACK

dupACK=3

dupACK

Kk F

NANJING UNIVERSITY

. Timeouts = Slow Start

Ebeh L SIRE B

timeout

new

dupACK CWND > ssthresh ACK

timeout

dupACK
new ACK

dupACK=3

dupACK

Kk F

NANJING UNIVERSITY

. dupACKs => Fast Recovery

timeout

new
ACK

dupACK CWND > ssthresh

timeout

dupACK
new ACK

“ﬂm New ACK changes state ONLY from Fast

“Recovery

timeout

new

dupACK CWND > ssthresh ACK

timeout

dupACK
new ACK

dupACK=3

dupACK

TCP state machine

ST

3 ; S .-..69‘,}:* 5 _s.

timeout

new

dupACK CWND > ssthresh ACK

timeout

dupACK
new ACK

dupACK=3

dupACK

Kk F

NANJING UNIVERSITY

26 -
24|
221

20

18

16
14
12
10
08
06
04
02

SS: Slow start
Al: Additive increase
MD: Multiplicative decrease

Threshold=16

Time-out

b -

1 1 1
12 13 14

15 16 Rounds

Ghikd

NANJING UNIVERSITY

= TCP flavors

TCP-Tahoe
> CWND =1 on 3 dupACKs

TCP-Reno
> CWND =1 on timeout
» CWND = CWND/2 on 3 dupACKs

d I
TCP-newReno P LA

 \ assumption
» TCP-Reno + improved fast recovery

TCP-SACK

» Incorporates selective acknowledgements

2= How can they coexist?

e e el

« All follow the same principle
* Increase CWND on good news
» Decrease CWND on bad news

« TCP flow control

« TCP congestion control

« TCP congestion control wrap-up
Router assisted congestion control

auag ReCaP: TCP Pl"OblemS

— = e e mm e e e
— - — — o
- - -

-

--fA3 : T~ Routers tell endpoints
s | - Ti ~
, Misled by non-congestion losses if they're congested }

— e o e —
-—— = ——

—-— -—
— —
—

+ Shortflows complete before discovering available capacity

el i i ' ; T Routers tell
/ AIMD impractical for high speed links : endboitewhat }
_ Saw tooth discovery too choppy for some apps- (G2 T S €
. Uﬁfa'rnund_e_r'_he’rerogeneous RTTs _--- -7
: et , Routers enforce
_»--Tightcoupling with reliability mechanisms- - % fair sharing }
« “tnd-hests.can cheat = ______o----"7"

[Could fix many of these with some help from routers! }, ik

NANJING UNIVERSITY

= Mechanisms for Congestion Control

Implicit -
(delay, discard) :

Backpressure

= =

Policing
‘,— 2

Destination

Choke packet

Explicit
(binary, credit, rate)

Source

o Choke Packet . HD&EISE

o Backpressure - RE

e Warning bit - EBE

e Random early discard - [ENEHESR

e Fair Queuing (FQ) © RS PEE

vid 3
NANJING UNIVERSITY

'3 - i P e,
e T Wy

Explicit Congestion Notification (ECN)

- Single bit in packet header; set by congested routers
» If data packet has bit set, then ACK has ECN bit set

* Many options for when routers set the bit
» Tradeoff between (link) utilization and (packet) delay

« Congestion semantics can be exactly like that of drop
> i.e., end-host reacts as though it saw a drop

« Advantages:

» Don't confuse corruption with congestion; recovery w/ rate
adjustment

» Can serve as an early indicator of congestion to avoid delays

> Easy (easier) to incrementally deploy
v' Today: defined in RFC 3168 using ToS/DSCP bits in the IP header
v Common in datacenters

hikZ

NANJING UNIVERSITY

