FYEY:

NANJING UNIVERSITY

.~ Outline

UDP: User Datagram Protocol

TCP: Transmission Control Protocol
TCP Connection Setup

TCP Connection Teardown

s UDP: User Datagram Protocol

* Lightweight communication between processes
> Avoid overhead and delays of order & reliability

« UDP described in RFC 768 - (1980!)
> Destination IP address and port to support demultiplexing

UDP (cont'd)

« "Best effort” service, UDP segments may be:
— lost
— delivered out-of-order fo app

Y Tl W,
ey Dl e e
A e W T By

B T e, 3

« Connectionless:
— no handshaking between UDP sender, receiver
— each UDP segment handled independently of others

« UDP use:
— streaming multimedia apps (loss tolerant, rate sensitive)
— DNS
— SNMP

sz Why is there a UDP?

no connection establishment (which can add delay)
simple: no connection state at sender, receiver
small header size

no congestion control: UDP can blast away as fast
as desired

= UDP Segment Format

T Al
S Rl e e

32 bits

v

A

Length in octets,

ource port # dest port #

including Header ——— |opqth checksum
and Data Header + Data +
, , Pseudo-header;
Application Or set to O if no check
data

(message)

UDPRIE SIS\

FT 4 4 1R
RIPHbiE | BEYIPHELE | 0 | 17 | UDPKE rep—
. 1 153.19.8.104 |
: 12FHHEEL <1 171.3.14.11]
$*ﬁ 12 22 2 2 20| 17 | 15
e [mwo [aewo] ke [R | 1057 | 13
----------- 15 | =0
T B o e O e Vi eise it i e
| UDPEER I UDPHEREER 7 TTTRR S IR B | 20
¥
< IPED IPEIBIRAVERIE SRS 3

hESEEXTE SR TUDPEIERRIERESE, mRZBEIT BRI IRERINEUDPA P 2ERBIE A S 8REEA
B TRt AR EER, RIXEN T T HERLEH
UDPIEEERFIEUEER D —iketRle, FIPAE (IPABILF RN & ER)

Kk F

»
NANJING UNIVERSITY

. UDP checksum

b

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment _

senaer. receilver.

« treat segment contents, « compute checksum of received
including header fields, as segment

sequence of 16-bit integers
 check if the sum of computed

* checksum: addition of checksum and checksum field
segment contents, and its value equals 1111....1111:

complement sum
- sender puts checksum value — NO - error detected
info UDP checksum field — VES - no error detected.

s

& ..-" e R

Internet checksum: example

example: add two 16-bit integers

1100110

1 01100110
110101010101 0101

Wr'apar'ound@IOIIIOl110111011

sum

1011101110111
checksum 0100010001 O0O0O0OO0T11

Note. when adding numbers, a carryout from the most
significant bit needs to be added to the result

NANJING UNIVERSITY

sz Optional error checking

T e e

 Optional error checking on the packet contents
* (checksum field = O means “don't verify checksum”)
« See text on how checksums are calculated

 Source port is also optional
« Useful to respond back to the sender in some cases

sz Outline

UDP: User Datagram Protocol

TCP: Transmission Control Protocol
TCP Connection Setup

TCP Connection Teardown

TCP delivers a reliable, in-order, byte stream

Reliable: TCP resends lost packets (recursively)
» Until it gives up and shuts down connection

In-order: TCP only hands consecutive chunks of data
to application

Byte stream: TCP assumes there is an incoming stream
of data, and attempts to deliver it to app

¢z What does TCP use from what we've seen so
“Ffar?

* Most of what we've seen
» Checksums
> Sequence numbers are byte offsets
> Sender and receiver maintain a sliding window

> Receiver sends cumulative acknowledgements (like GBN)
v’ Sender maintains a single retransmission timer

> Receivers buffer out-of-sequence packets (like SR)

 Few more: fast retransmit, timeout estimation
algorithms etc.

st= TCP header

e _

/<\fource port Destination port >
Used to Mux Sequence number

and Demux

Acknowledgment

HdrLen| 0 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

st= TCP header

Source port Destination port

Sequence number

Acknowledgment

Computed
over pseudo-header

HdrlLen

0

Flags | Advertised window

and data <

"

—

Checksum) Urgent pointer

> Sequence numbers are byte offsets

TCP header

S Loy w s

s o5 f”

mﬁ*

Source port Destination port
Byte of fsets | <Sequence numbeD
(NOT packet id), Acknowledgment

because TCP is a HdrlLe
byte stream

0| Flags | Advertised window

Checksum Urgent pointer

Options (variable)

sz VCP "stream of bytes” service...

Application @ Host A

PEZ
fc--+-+ '5,.
NNN ™
Ol—=IN|w fe'e)
\\\\\\\\
© Wi
SRRl TR
® oo e =
Of—|N|w [00)
@)

Application @ Host B

4= TCP "stream of bytes” service...

Host A

| go| TO| WO lve,
KKK N
NG s
Q| = N Wl (o]
YVVYY Y
TCP Data
TCP Data
Hos"' B
YVYVYY A\ 4
| go| U0 O (ve, :
=S 23 :
NEEE s %
Ol = N W (00 -
4
: Wik &

NANJING UNIVERSITY

t= Sequence numbers

ISN (Initial Sequence Number)

Kk bytes
<———>

Host A 2 ‘

Sequence humber
= 1st byte in segment =
ISN + k

N

»
NANJING UNIVERSITY

Sequence numbers

B ST)
o N ;tu:-‘ﬁ),

ISN (Initial Sequence Number)

k
-
Host A 2 ‘
vyyy \ 4
Sequence number TCP Data | TCP
=1t by;:es:]] sekgmen‘r - ~ ACK sequence number
* = next expected byte
= seqno + length(data)
TCP Data | TP
Host B

S

NANJING UNIVERSITY

TCP segment

T PP S A 2
g
I Sale Lo oh

IP Data

»

TCP Data (segment)

* IP packet

»

TCP Hdr

IP Hdr

» No bigger than Maximum Transmission Unit (MTU)
> E.g., up to 1500 bytes with Ethernet

« TCP packet
> IP packet with a TCP header and data inside
> TCP header = 20 bytes long

« TCP segment
» No more than Maximum Segment Size (MSS) bytes
> E.g., up to 1460 consecutive bytes from the stream
> MSS = MTU - (IP header) - (TCP header)

— 1CP header

Starting byte
offset of data
carried in this
segment

Source port Destination port

_ sequence number

Acknowledgment

HdrLen| 0 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

> Receiver sends cumulative acknowledgements (like GBN)

ACKs and sequence numbers

b e P
T - i e B
*: v Wi .‘“" ﬁ

« Sender sends packet

» Data starts with sequence number X
» Packet contains B bytes [X, X+1, X+2, ... X+B-1]

« Upon receipt of packet, receiver sends an ACK

» If all data prior to X already received:

v ACK acknowledges X+B (because that is next expected byte)
» If highest in-order byte received is Y s.t. (Y+1) < X

v ACK acknowledges Y+1

v Even if this has been ACKed before

«s= 1Yypical operation

« Sender: seqgno=X, length=B

« Receiver: ACK=X+B

+ Sender: seqno=X+B, length=B
« Receiver: ACK=X+2B

« Sender: seqno=X+2B, length=B

+ Seqgno of next packet is same as last ACK field

R) ﬁL

. N 3

Baikd
NANJING UNIVERS

»
SITY

Sender sends packets with 100B and seqnos.:
» 100, 200, 300, 400, 500, 600, 700, 800, 900, ..

Assume the fifth packet (seqno 500) is lost, but no
others

Stream of ACKs will be:

» 200, 300, 400, 500 (seqno:600), 500 (segno:700), 500
(seqno:800), 500 (seqno:900),...

R) ﬁL

. N 3

Baikd
NANJING UNIVERS

»
SITY

4—-@

? _%\42 .‘u.f‘},-ﬁ 4

mﬁ*

TCP header

s Pl f”

Acknowledgment
gives seqno just
beyond highest
seqno received

Source port

Destination port

Se

ber

Acknowledgment >

HdrLen| 0 | Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

 Receivers can buffer out-of-sequence packets (like SR)

« Introduces fast retransmit: duplicate ACKs trigger
early retransmission

R) J,

. N 3

Baikd
NANJING UNIVERS

»
SITY

 Duplicate ACKs are a sign of an isolated loss
» The lack of ACK progress means 500 hasn't been delivered
» Stream of ACKs means some packets are being delivered

 Trigger retransmission upon receiving k duplicate
ACKs
» TCP uses k=3
» Faster than waiting for timeout

» Two choices after resending:

» Send missing packet and move sliding window by the
number of dup ACKs

v’ Speeds up transmission, but might be wrong

» Send missing packet, and wait for ACK to move sliding
window

v Is slowed down by single dropped packets

 Which should TCP do?

« Sender maintains a single retransmission timer (like
GBN) and retransmits on timeout

« If the sender hasn't received an ACK by timeout,
retransmit the first packet in the window

« How do we pick a tfimeout value?

saz 1iming illustration

Timeout

L

— 1

Timeout too long > inefficient

e e

\

Timeout too short =

duplicate packets ;

If the sender hasn't received an ACK by timeout,
retransmit the first packet in the window

How to set timeout?

« Too long: connection has low throughput
 Too short: retransmit packet that was just delayed

Solution: make timeout proportional to RTT
« But how do we measure RTT?

Errrrrreeyiy Dol e el
o e T

. RTT estimation

« Exponential weighted average of RTT samples
EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

RTT (milliseconds)

time (seconnds)

—o— SampleRTT —&— Estimated RTT

Problem: Ambiguous measurements

X L e _,?-‘-?l

 How do we differentiate between the real ACK, and
ACK of the retransmitted packet?

Sender Receiver Sender Receiver

SampleRTT

Re
onh

SampleRTT

T PP S A 2
B, A e
N I S

Karn/Partridge algorithm

* Don't use SampleRTT from retransmissions
» Once retransmitted, ignore that segment in the future

« Computes EstimatedRTT using a = 0.125

« Timeout value (RTO) =2 x EstimatedRTT

> Employs exponential backoff
v Every time RTO timer expires, set RTO « 2:RTO
* (Up fo maximum = 60 sec)

v' Every time new measurement comes in (= successful original
transmission), collapse RTO back to 2 x EstimatedRTT

« Insensitive to RTT variations

N PPy by :'s. -4
P S Sie A

Jacobson/Karels algorithm

Problem: need to better capture variability in RTT
 Directly measure deviation

Deviation = | SampleRTT - EstimatedRTT |
DevRTT: exponential average of Deviation
RTO = EstimatedRTT + 4 x DevkRTT
SRTT (k+1)=(1-g)xSRTT (k)+ g xRTT (k+1)
SERR (k +1)=RTT (k +1)-SRTT (k)
SDEV (k +1)=(1-h)xSDEV (k)+ hx|SERR (k +1)|
RTO(k +1)=SRTT (k+1)+ f xSDEV (k +1)
g=}=0125 h=1/=025 f=20r4

= 1CP header

Number of 4-
byte words in

the header

Source port

Destination port

Sequence number

Acknowledgment

HdrLen) o

e ——
N

Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

.~ Outline

UDP: User Datagram Protocol

TCP: Transmission Control Protocol
TCP Connection Setup

TCP Connection Teardown

TCP header field for connection establishment and

teardown
Source Port Destination Port
Sequence Number
Acknowledgement Number
Data Reserved ||l U/A|P|R|S|F WWindow
Offset RIC|S|S|Y]|I
GIK/IH|TIN|N
ChecksTrm Urgent Pointer
TCP Options Padding
Data

S

NANJING UNIVERSITY

 2-way handshake
— A sends SYN, B replies with SYN
— Lost SYNs handled by re-transmission
— Ignore duplicate SYNs once connected

* Problem
— How to recognize slipped segments from old connection
— How to recognize duplicated obsolete SYN

2-Way Handshake: Slipped Data Segment

A B

W’ A initiates a connection

*/_ﬁ-ﬂf/ B accepts and acknowledges
SN =g

\ A begins transmission

SN = 2”‘

____________________ Connection closed

New connection opened

b

N = 4p 1 Obsolete segment SN = 401 is accepted;
\’ valid segment SV = 401 is discarded as duplicate

hikZ

NANJING UNIVERSITY

Initial Sequence Number (ISN)

N PPy by :'s. -4
P S Sie A

 Handle

— Start each new connection with a different initial
sequence number (ISN) far from previous connection

— The connection request is of the form SYN i+1, where i is
the sequence number of the first data segment that will
be sent on this connection.

« However:

sz 2-Way Handshake: Obsolete SYN

T
g g

Obsolete SYN [arrives

B responds; A sends new SYN

B discards duplicate SYN

B rejects segment as out of sequence

FBEY

NANJING UNIVERSITY

s Solution: three-way handshake

'3 e o T,
R S By

A B
« Three-way handshake to SYN
establish connection
» Host A sends a SYN (open; (M

“synchronize sequence numbers”)

to host B Ack
> Host B returns a SYN }
acknowledgment (SYN ACK) M

Q

» Host A sends an ACK to
acknowledge the SYN ACK

=FEF: BANAHNSYNIES

o
JING UNIVE

—. 1CP header

Flags:
SYN
ACK
FIN
RST
PSH
URG

Source port Destination port

Sequence number

Acknowledgment

HdrLen| O Glags Advertised window

Checksum Urgent pointer

Options (variable)

Data

: A's initial SYN packet

A's port B's port

A's Initial Sequence Number

A tells B to open
a connection N/A

5 0] SYN | Advertised window

Checksum Urgent pointer

Step 1: B's SYN-ACK packet

e PP el ='?.1'-'
o - Wt O
s e ey e

B's port A’'s port

B's Initial Sequence Number

B tells it accepts

and is ready to ACK=A's TSN+1

[
accept next 5 O | SYN|ACK Advertised window
packet

Checksum Urgent pointer

A's ACK to SYN-ACK

A tells B to open
a connection

A's port

B's port

A's Initial Sequence Number

ACK=B's TSN+1

5

0

ACK

Advertised window

Checksum

Urgent pointer

sz 1CP's 3-Way handshaking

Active Passive
Open Open
Client (initiator) Server
connect() S listen()

Wr
ACk:X“'

LyN + ACK, SeqNum = Y.

ACK: ACk - y + 1

= What if the SYN Packet Gets Lost?

'3 o I
X e e

« Suppose the SYN packet gets lost
» Packet dropped by the network or server is busy

 Eventually, no SYN-ACK arrives
> Sender retransmits the SYN on timeout

 How should the TCP sender set the timer?

> Sender has no idea how far away the receiver is
» Hard to guess a reasonable length of time to wait

» SHOULD (RFCs 1122 & 2988) use default of 3 seconds
v’ Some implementations instead use 6 seconds

BT

= SYN loss and web downloads

i

 User clicks on a hypertext link
> Browser creates a socket and does a “connect”
> The “connect” triggers the OS to transmit a SYN

« If the SYN is lost...

» 3-6 seconds of delay: can be very long
» User may become impatient and can retry

» User triggers an “abort” of the “connect”
> Browser creates a new socket and another “connect”
> Can be effective in some cases

s

Three-Way Handshake: Examples

A B

&’ A initiates a connection
Hw&—' B accepts and acknowledges

sy

St LA,
=i+
\ A acknowledges and begins transmission

{a) Normal operation

Obsolete SYN arrives

)= i n . 3
SyNis AN=IY B accepts and acknowledges
RST, 40
T Ay y]
A rejects B's connection

(b) Delayed SYN

A initiates a connection
Old SYN arrives at A: A rejects

B accepts and acknowledges

SNivy,

+ 1
\ A acknowledges and begins transmission

(e) Delayed SYN, ACK

Aik,

NANJING UNIVERSITY

.~ Outline

UDP: User Datagram Protocol

TCP: Transmission Control Protocol
TCP Connection Setup

TCP Connection Teardown

= Normal termination, one side at a

i e B

Time
B
§)
< X
2 Z < £/ \» Z \x \8 &
» >/ & = « 72 \z <
7< ® e o
A . <
time Y
* Finish (FIN) to close and receive remaining byte Connection
> FIN occupies one byte in the sequence space Connection how closed
. now half-closed
« Ofther host acks the byte to confirm
« Closes A's side of the connection, but not B's TIME_WAIT:
> Until B likewise sends a FIN Avoid reincarnation
> Which A then acks B will retransmit FIN

if ACK is lost

o sk A

»
IVERSITY

BT g S vt g
I Smie e ""-‘5‘@

Normal termination, both together

-1
)} '
< Z N
Z < -\-‘\()
%: >
7~ ~

time

TIME_WAIT:
Avoid reincarnation

Can retransmit

FIN ACK if ACK lost Connection

now closed
« Same as before, but B sets FIN with their ack of A's FIN

Ty 7~ ’L

Y- (74

P
NANJING UNIVERSITY

040Q
RST

« AsendsaRESET (RST) to B
> E.g., because application process on A crashed
* That's it
> B does not ack the RST
» Thus, RST is not delivered reliably, and any data in flight is lost

> But: if B sends anything more, will elicit another RST

L

. TCP header

e

IRy

Source port Destination port
Flags: Sequence number
SYN Acknowledgment
%N(HdrLen| 0 @(gs Advertised window
RST Checksum Urgent pointer
PSH . .
URG Options (variable)

. TCP client lifecycle

R e
ai e S

CLOSED

Wait 30 sec Send SYN

TIME_WAIT SYN_SENT
Receive FIN Receive SYN-ACK

Send ACK Send ACK
FIN_WAIT 2 ESTABLISHED

Receive ACK

Send Nothing Send FIN

FIN_WAIT 1

Kk F

»
NANJING UNIVERSITY

. TCP server lifecycle

T Gt cps
i ' ikl B

CLOSED
Receive ACK Create a listen socket
Send Nothing
LAST _ACK LISTEN
CLOSE_WAIT SYN_RCVD

Receive FIN Receive ACK

Send ACK Send Nothing

FIN_WAIT 1

Kk F

»
NANJING UNIVERSITY

hikZ

NANJING UNIVERSITY

