sz Caching: Where?

S P hpet

* Options
> Client (browser)
» Forward proxies
> Reverse proxies
» Content Distribution Network

== Caching: Where?

. Many clients transfer same information
 Generate unnecessary server and network load
« Clients experience unnecessary latency

Server |

Tier-1 ISP

Clients -[EE.

NANJING UNIVERSITY

Caching with Reverse Proxies

Y Tl P
T e e Al
Fs Pl 5

* Cache documents close to server
* Decrease server load
By content provider

Reverse proxies

Tier-1 ISP

Clients -:Df-

' T P
TR B Ly
Fs Pl 5

Caching with Forward Proxies

Cache documents close to clients
« Reduce network traffic and decrease latency
* By ISPs or enterprises

Reverse proxies

Tier-1 ISP

= Internet Applications

« Internet Applications Overview

« Domain Name Service (DNS)

« Electronic Mail

File Transfer Protocol (FTP)

WWW and HTTP

Content Distribution Networks (CDNs)

Ghitd

NNNNNNNNNNNNNNNNNNN

. Content Distribution Networks

. o % = _:'."'ia'ﬁ

ChchDNS) Origin server

lenge in North America

— Stream large files (e.g. video)
from single origin server in real @
time

— Protect origin server from DDOS l
attacks CDN distribution node

« Solution @

— Replicate content at hundreds of / l \
servers throughout Internet @

— CDN distribution node coordinate @ @
the content distribution CDN server

— Placing content close to user in'S America CDN server iD:'S_S:'”V”

| |

in Europe 5
ik Z

»
NANJING UNIVERSITY

= Content Replication

Iz S i

Content provider (origin server) is CDN customer

CDN replicates customers' content in CDN servers

When provider updates content, CDN updates its
servers

Use authoritative DNS server to redirect requests

R) ﬁL

. N 3

Baikd
NANJING UNIVERS

»
SITY

Y Tl P
Eerrrrrryty Mo dr g v
L W T e B
TaTRs i 3

Supporting Techniques

DNS

— One name maps onto many addresses

Routing
— Content-based routing (to nearest CDN server)

URL Rewriting

— Replaces "http://www.sina.com/sports/tennis.mov" with
“http://www.cdn.com/www.sina.com/sports/tennis.mov"

Redirection strategy
— Load balancing, network delay, cache/content locality

Iy "’f'

e M £ _._*...__-'
T

CDN Operation

CDN authoritative
CDN Server Server

1" URL rewriting - get
authoritative server

i

1. Get near CDN server IP
address

2. Warm up CDN cache

3. Retrieve pages/media from
CDN Server

. Redirection

SRR T g
7 v i W
IR EIESTL

» CDN creates a "map”, indicating distances from
leaf ISPs and CDN servers

« When query arrives at authoritative DNS server
— Server determines ISP from which query originates
— Uses "map” to determine best CDN server

« CDN servers create an application-layer overlay
network

FYEY:

NANJING UNIVERSITY

* Transport layer basics
 Design of reliable transport
* Designing a reliable transport protocol

i 4 .* '

3 o i
™ . ik B

Transport Services and Mechanisms

The Transport Layer

Application Application

Peer-to-peer transport protocol
T]—an Spon mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Transp()rl
'l L

<

f Network 1 :{'— Network —<l;_ Network 3 i ;

— IP —>

NANJING UNIVERSITY

Provide logical communication between
app processes running on different
hosts

Transport protocols run in end systems

— Send side: breaks app messages into
segments, passes to network layer

— Receive side: reassembles segments
into messages, passes to app layer

More than one ftransport protocol
available to apps

— Internet: TCP and UDP

NANJING UNIVERSITY

== Why a transport layer?

& Ry

 IP packets are addressed to a host but end-to-end
communication is between application processes at hosts

* Need a way to decide which packets go to which applications
(multiplexing/demultiplexing)

» IP provides a weak service model (best-effort)

* Packets can be corrupted, delayed, dropped, reordered,
duplicated

* No guidance on how much traffic to send and when
* Dealing with this is tedious for application developers

= Multiplexing & demultiplexing

* Multiplexing (Mux)

« Gather and combining data chunks at the source
host from different applications and delivering
to the network layer

* Demultiplexing (Demux)

« Delivering correct data to corresponding sockets
from multiplexed a stream

@ﬁik%

IIIIIIIIIIIIIIIIIII

2= Role of the transport layer

« Communication between processes
» Mux and demux from/to application processes
» Implemented using ports

s Role of the transport layer

'3 g, Hao
N I S

* Provide common end-to-end services for app
layer [optional]
* Reliable, in-order data delivery
« Well-paced data delivery

* Too fast may overwhelm the network
* Too slow is not efficient

W

AR N A R ok
X TR _'-f?,' . “*‘e'é“i‘.&

Role of the transport layer

« TCP and UDP are the common transport
protocols
* Also SCTP, MPTCP, SST, RDP, DCCP, ...

R) ﬁL

. N 3

Baikd
NANJING UNIVERS

»
SITY

2= Role of the transport layer

« UDP is a minimalist transport protocol
» Only provides mux/demux capabilities

== Role of the transport layer

« TCP offers areliable, in-order, byte stream abstraction

« With congestion control, but w/o performance guarantees (delay, b/w,
etc.)

R) ﬁL

. N 3

Baikd
NANJING UNIVERS

»
SITY

4= Applications and sockets

« Socket: software abstraction for an application
process to exchange network messages with the
(transport layer in the) operating system

« Transport layer addressing
e <HostIP, Port>, called a socket

« Two important types of sockets
« UDP socket: TYPE is SOCK_DGRAM
« TCP socket: TYPE is SOCK_STREAM

 16-bit numbers that help distinguishing apps
* Packets carry src/dst port No. in transport header
« Well-known (0-1023) and ephemeral ports

« OS stores mapping between sockets and ports

* Port in packets and sockets in OS

« For UDP ports (SOCK_DGRAM)
« OS stores (local port, local IP address) €-> socket

« For TCP ports (SOCK_STREAM)
« OS stores (local port, local IP, remote port, remote IP)

&> socket |
Ga ik

»
SITY

e 3 ,(._..4,
L f’

= Multiplexing/demultiplexing

—— multiplexing at sender: —

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

application

Transpﬁ*

networK

“p= =~y

applica
net

iiilllll
el]
el
K

link

link

physicd|

phys

i

~ demultiplexing at receiver: —

use header info to deliver
received segments to correct

socket

application

1.

socket

O process

hetwor

link

physic

. - Cna A A
7 v i W
g T R *eﬁ

How demultiplexing works

* host receives IP datagrams

> each datagram has source IP
address, destination IP address

> each datagram carries one
transport-layer segment

> each segment has source,
destination port number

* host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

source port #{ dest port #

other header fields

application
data

(payload)

NNNNNNNNNNNNNNNNNNN

Tl P
Eerrrrrryty Mo dr g v
L W T e B
TaTRs i 3

Connectionless demultiplexing

recall: created socket has host-
local port #:

DatagramSocket mySocketl
= new DatagramSocket (12534) ;

When host receives UDP
segment:
» checks destination port #
in segment

> directs UDP segment to
socket with that port #

recall: when creating datagram
to send into UDP socket, must
specify

> destination IP address

» destination port #

IP datagrams with same
dest. port #, but different

‘ source IP addresses
and/or source port
numbers will be directed to
same socket at dest.

Connectionless demux: example

DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new serverSocket = new mySocketl = new
DatagramSocket DatagramSocket l?g;:?gl):amSocket
(9157) ; (6428) ;

application
\ 4 ||

application
$port
transpgr
| hetwor
, link link
q physical physica \,V \
source port: 6428 source port: ?
< dest port: 9157 dest port: ?
> le ¥
I “* 000]
source port: 9157 source port: ? s
dest port: 6428 dest port: ? L7 i] ;ﬁ J’\ .%

NANJING UNIVERSITY

I ;Wi ‘qu.; ‘&

. Connection-oriented demux

TCP socket identified by 4- + server host may support many

tuple: simultaneous TCP sockets:
> source IP address > each socket identified by its
> source port number own 4-tuple

> dest IP address

« web servers have different
> dest port number

sockets for each connecting
client
» non-persistent HTTP will

have different socket for
each request

demux: receiver uses all
four values to direct
segment to appropriate
socket

T 7~ ’L

Y (74

A TN
NANJING UNIVERSITY

+4= Connection-oriented demux: example

e

applicliion aiilicaﬂon
e trapspgrt [o sl o |
transpprt ne‘r\l/orll trlansport
netwoltk lin nd‘rwor'k
| link E physicd| “II“‘k ‘ |
q thSiCﬂl server.: p YSiCGI D
—— IP -
der'ess
|;__
host: IP source IP port: B,80 host: IP
address A dest IP port: A91 source IP port: C 5775 address
S dest IP portR,80 C
source IP port: A,9157
dest IP, port: B8Q. source IP port: C,9157
dest IP port.B,80

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets K %

NANJING UNIVERSITY

Connection-oriented demux: example

threaded server

aiilica‘rion
[L L
trignsport
ndtwork
lingk W
server: physical b |
TP gl
ddress
: source IP port: B,80 host: IP
Q(d)g:z.egz dest IP port: A9157 source IP port: C,5775 address
A - dest IP port: B,80 C
source IP port: A,9157
dest IP, port: B,80

source IP port: C,9157
dest IP port: B,80

i’ﬁ%\%

NANJING UNIVERSITY

« Transport layer basics
* Design of reliable transport
* Designing a reliable transport protocol

Why a transport layer?

Tl P
Eerrrrrryty Mo dr g v
L W T e B
TaTRs i 3

« IP provides a weak service model (best-effort)
* Packets can be corrupted, delayed, dropped, reordered, duplicated
« No guidance on how much traffic to send and when
« Dealing with this is tedious for application developers

Vo SR

It= Reliable transport

. In a perfect world, reliable transport is easy

@Sender
— Send packets

@Receiver
— Wait for packets

+w= Reliable transport

« All the bad things best-effort can do
> A packet is corrupted (bit errors)
> A packet is lost (why?)
> A packet is delayed (why?)
» Packets are reordered (why?)
> A packet is duplicated (why?)

Reliable transport

T PP A 2
o e T
I Sale Lo oh

* Mechanisms for coping with bad events

Checksums: to detect corruption

ACKs: receiver tells sender that it received packet
NACK: receiver tells sender it did not receive packet
Sequence numbers: a way to identify packets
Retransmissions: sender resends packets

Timeouts: a way of deciding when to resend packets

Forward error correction: a way to mask errors without
retransmission

YV VYV VYV VY

Y

Network encoding: an efficient way to repair errors

LEED e

Dealing with packet corruption

* the question: how to recover from errors:
+ acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK

« negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
« sender retransmits pkt on receipt of NAK

1
ack —
2 e
nack —=
> =
e |

Sender Time Receiver

1 P(1)
ack(l) M
e 5
1 {1) Packet
ack() #1 or #2?
2 = P>
o7 —
Sender Receiver

Time

. Dealing with packet loss

=
:—-""éfﬁ;?'-ﬁ’;
S D) s

Timer-driven loss detection

Set timer when packet is sent; retransmit on timeout

1
P(1)
Timeout
A\ 4 1
P(1)
ack(l) =
}
P(2)
—
Sender Receiver

Time

St

_f.'.-..

T e S g
P e P

P Sl S

» Dealing with packet loss (of ack)

1
P(1)
—
Timeout <+
1
P(1)
ack(l) —
) —
P(2)
—
Sender Receiver

Time

1 P(1)

Timeout

H—
O
-
o
O
=
I~
—
—

A 4

| duplicatel
—

Time

Receiver

o ’ﬁ‘ :;“h'z“‘,

Components of a solution

Checksums (to detect bit errors)

Timers (to detect loss)

Acknowledgements (positive or negative)
Sequence numbers (to deal with duplicates)

« Transport layer basics
 Design of reliable transport
* Designing a reliable transport protocol

- A Solution: "Stop and Wait"

e i

@Sender @Receiver
o Send packet(T); (re)set e Wait for packet
Timer; o If packet is OK, send
o If (ACK) ACK
o I++ repeat o Else, send NACK
o If (NACKor TIMEOUT) e Repeat
e repeat

* A correct reliable transport protocol, but an
extremely inefficient one

Stop & Wait is inefficient

sender receiver

il e o i
R R
% . P

- |

first packet bit transmitted, t = 0 -
last packet bit transmitted, t = L/ R i ~_

. - first packet bit arrives

RTT ——last packet bit arrives, send ACK

ACK arrives, send next|
packet, t=RTT+L/R |

L: packet size
R: bandwidth of the link If (L/R« RTT) then
RTT = 2*PropDelay: roundtrip time Throughput ~ DATA/RTT

L Ry

NANJING UNIVERSITY

s Orders of magnitude

Fma s YD S

e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000 bits

= = 8 microsecs
R 109 bits/sec

D‘rr'ans =

« if RTT=30 msec,
* U conders Utilization - fraction of time sender busy sending

U ~ L/R 008
Sendel’_ RTT+ L/R o 30.008

= 0.00027

« 33kB/sec throughput over 1 Gbps link!
 network protocol limits use of physical resources!

«=s= Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
— range of sequence numbers must be increased
— buffering at sender and/or receiver

data pc:cke’r—» data packets—» ‘b

+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

s

LF

it Ak B

» Pipelining: increased utilization

sender

first packet bit transmitted, + = 0
last bit transmitted, t =L /R T

RTT

ACK arrives, send nex’rL
packet,t =RTT+L /R_

U 3L/R

sender

receiver

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

= 0.00081

Ghikd

NANJING UNIVERSITY

s 1 hree design decisions

'3 - i P e,
e T Wy

Which packets can sender send?
» Sliding window
How does receiver ack packets?
> Cumulative
> Selective
Which packets does sender resend?

> Go-Back N (GBN)
> Selective Repeat (SR)

Sliding window

. P e e TS A A
o e R WO s
e o b *eﬁ

« Window = set of adjacent sequence numbers
> The size of the set is the window size; assume window size is n

 General idea: send up to n packets at a time
» Sender can send packets in its window
> Receiver can accept packets in its window

of acceptable packets "slides” on successful
reception/acknowledgement

contains all packets that might still be in transit

- Sliding window often called "packets in flight”_

s Sliding window

'3 g, Hao
N I S

« Let A be the last ack'd packet of sender without gap; then
window of sender = {A+1, A+2, ..., A+n}
n I Already ACK'd

A
D Sent but not ACK'd

A
pREOORROON0000000 T comon e 2o

sequence humber >

« Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,..., B+n}

n I Received and ACK'd
A Acceptable but not

B
IIIII*DDIIDDIDDDDD Dye‘rr'eceived

Cannot be received-
Lk B

W

X e

£ 4;-.-:-,

Throughput of sliding window

» If window size is n, then throughput is roughly
> MIN(h"*DATA/RTT, Link Bandwidth)

« Compare to Stop and Wait: Data/RTT

* What happens when n gets too large?

W

Acknowledgements w/ sliding window

* Two common options

»Cumulative ACKs: ACK carries next in-
order sequence number that the receiver
expects

NANJING UNIVERSITY

s Cumulative acknowledgements
At receiver
n I Received and ACK'd
B { \ D Acceptable but not
et received
IIIIIiDDDDDDDDDDDD] Cannot be received
After receiving B+1, B+2
Bpew= B+2 n
\
1110 1L AR

Receiver sends ACK(B+3) = ACK(B,.,+1)

= Cumulative acknowledgements (cont'd)

™ e e

Loy

At receiver

n I Received and ACK'd
B (\ D Acceptable but not
yet received
IIIIIiDDDDDDDDDDDD [] Cannot be received

After receiving B+4, B+5

n

B A
Illlli{DDDIIDDDDDDD
Receiver sends ACK(B+1)

== Acknowledgements w/ sliding window

™ = ﬁ_ﬁe

* Two common options

» Cumulative ACKs: ACK carries next in-order sequence
humber the receiver expects

» Selective ACKs: ACK individually acknowledges correctly
received packets

+ Selective ACKs offer more precise information but
require more complicated book-keeping

L= Sliding window protocols

 Resending packets: two canonical approaches
» Go-Back-N
» Selective Repeat

* Many variants that differ in implementation
details

@ﬁik%

IIIIIIIIIIIIIIIIIII

= 60-Back-N (GBN)

Fma s YD S

Sender transmits up to n unacknowledged packets

Receiver only accepts packets in order
» Discards out-of-order packets (i.e., packets other than B+1)

Receiver uses cumulative acknowledgements
> i.e., sequence# in ACK = next expected in-order sequence#

Sender sets timer for 1st outstanding ack (A+1)
If timeout, retransmit A+l1, ... , A+n

s Sliding window with GBN

Fma s YD S

« Let A be the last ack'd packet of sender without gap;
then window of sender = {A+1, A+2, ..., A+n}

A T I Already ACK'd
ﬁ’ ‘ || sent but not AcKd
INiN0000000000000 T

sequence humber >

« Let B be the last received packet without gap by
receiver, then window of receiver = {B+1,..., B+n}

B T B Received and AcKd
ﬁ(‘ AccepTat?le but not
IRRRRRCO00DOEODLUE | Yot received

Cannot be regeiyed j &

NANJING UNIVERSITY

R T

GRS

GBN example w/o errors

Sender Window
{1 1
{1 2} 2

Window size = 3 packets

Receiver Window

Ol W

—

Sender

—

Time

Receiver

= GBN example with errors

Sender Window Window size = 3 packets Receiver Window

O\U'I-P wn+—

Timeout ; X
PGCke* 4 Discar-d
v :: DiSCClr'd
Sender Receiver

Time

4z Selective Repeat (SR)

 Sender: tfransmit up to n unacknowledged packets

Assume packet k is lost, k+1 is not
» Receiver: indicates packet k+1 correctly received
> Sender: retransmit only packet k on timeout

Efficient in retransmissions but complex book-keeping
> Need a timer per packet

b Tl W,
Eerrrrrryty Mo dr g v
W T T

TR T e

SR example with errors

Sender Window Window size = 3 packets Receiver Window
{1} 1
{1, 2} 2
{1,2,3} 3
{2,3.4 4
(3,4,5) |5 S§>%x
Timeout 6
Packet 4 e — Buffered
{4,5,6} 4 H Buffere
{4, 5, 6}
ACK=A %
{7,8,9} 7 =
Sender — Receiver

= GBN vs. Selective Repeat

4 e o T,
B P A O S

« When would GBN be better?

« When error rate is low; wastes bandwidth
otherwise

« When would SR be better?
* When error rate is high; otherwise, too complex

R) J,

. N 3

Baikd
NANJING UNIVERS

»
SITY

BT

= Observations

i

« With sliding windows, it is possible to fully utilize a link,
provided the window size is large enough.

 Sender has to buffer all unacknowledged packets, because
they may require retransmission

 Receiver may be able to accept out-of-order packets, but only
up to its buffer limits

» Implementation complexity depends on protocol details (6BN
vs. SR)

= Components of a solution

Checksums (for error detection)
Timers (for loss detection)

Acknowledgments
> Cumulative
> Selective

Sequence humbers (duplicates, windows)
Sliding windows (for efficiency)

Reliability protocols use the above to decide when
and what to retransmit or acknowledge

hikZ

NANJING UNIVERSITY

