
Caching: Where?

• Options
Client (browser)
Forward proxies 
Reverse proxies
Content Distribution Network 



Caching: Where?
• Many clients transfer same information 

• Generate unnecessary server and network load
• Clients experience unnecessary latency

Server

Clients

Tier-1 ISP

ISP-1 ISP-2



Caching with Reverse Proxies
• Cache documents close to server

• Decrease server load
• By content provider

Clients

Tier-1 ISP

ISP-1 ISP-2

Reverse proxies



Caching with Forward Proxies
• Cache documents close to clients 

• Reduce network traffic and decrease latency
• By ISPs or enterprises

Clients

Tier-1 ISP

ISP-1 ISP-2

Reverse proxies

Forward proxies



Internet Applications

• Internet Applications Overview
• Domain Name Service (DNS)
• Electronic Mail
• File Transfer Protocol (FTP)
• WWW and HTTP
• Content Distribution Networks (CDNs)



Content Distribution Networks 
(CDNs)

• Challenge
– Stream large files (e.g. video) 

from single origin server in real 
time

– Protect origin server from DDOS 
attacks

• Solution
– Replicate content at hundreds of 

servers throughout Internet
– CDN distribution node coordinate 

the content distribution
– Placing content close to user

Origin server 
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia



Content Replication

• Content provider (origin server) is CDN customer

• CDN replicates customers’ content in CDN servers

• When provider updates content, CDN updates its 
servers

• Use authoritative DNS server to redirect requests



Supporting Techniques
• DNS

– One name maps onto many addresses

• Routing
– Content-based routing (to nearest CDN server)

• URL Rewriting
– Replaces “http://www.sina.com/sports/tennis.mov” with 

“http://www.cdn.com/www.sina.com/sports/tennis.mov”

• Redirection strategy
– Load balancing, network delay, cache/content locality



CDN Operation

1’  URL rewriting – get 
authoritative server

1. Get near CDN server IP 
address

2. Warm up CDN cache

3. Retrieve pages/media from 
CDN Server

Client Origin Server

CDN authoritative 
ServerCDN Server

1

1

3 2



Redirection

• CDN creates a “map”, indicating distances from 
leaf ISPs and CDN servers

• When query arrives at authoritative DNS server
– Server determines ISP from which query originates
– Uses “map” to determine best CDN server

• CDN servers create an application-layer overlay 
network





• Transport layer basics
• Design of reliable transport
• Designing a reliable transport protocol



Transport Services and Mechanisms

Application Application

IP

Network 1 Network 
2

Network 3

The Transport Layer



Internet Transport Services

• Provide logical communication between 
app processes running on different 
hosts

• Transport protocols run in end systems
– Send side: breaks app messages into 

segments, passes to network layer
– Receive side: reassembles segments 

into messages, passes to app layer

• More than one transport protocol 
available to apps

– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport



Why a transport layer? 

• IP packets are addressed to a host but end-to-end 
communication is between application processes at hosts
• Need a way to decide which packets go to which applications 

(multiplexing/demultiplexing)

• IP provides a weak service model (best-effort)
• Packets can be corrupted, delayed, dropped, reordered, 

duplicated 
• No guidance on how much traffic to send and when
• Dealing with this is tedious for application developers



Multiplexing & demultiplexing

• Multiplexing (Mux)
• Gather and combining data chunks at the source 

host from different applications and delivering 
to the network layer

• Demultiplexing (Demux)
• Delivering correct data to corresponding sockets 

from multiplexed a stream



Role of the transport layer

• Communication between processes
Mux and demux from/to application processes
Implemented using ports



Role of the transport layer

• Communication between processes
• Provide common end-to-end services for app 

layer [optional]
• Reliable, in-order data delivery
• Well-paced data delivery

• Too fast may overwhelm the network
• Too slow is not efficient



Role of the transport layer

• Communication between processes
• Provide common end-to-end services for app 

layer [optional]
• TCP and UDP are the common transport 

protocols
• Also SCTP, MPTCP, SST, RDP, DCCP, … 



Role of the transport layer

• Communication between processes
• Provide common end-to-end services for app layer 

[optional]
• TCP and UDP are the common transport protocols
• UDP is a minimalist transport protocol

 Only provides mux/demux capabilities



Role of the transport layer

• Communication between processes

• Provide common end-to-end services for app layer [optional]

• TCP and UDP are the common transport protocols

• UDP is a minimalist transport protocol

• TCP offers a reliable, in-order, byte stream abstraction
• With congestion control, but w/o performance guarantees (delay, b/w, 

etc.)



Applications and sockets

• Socket: software abstraction for an application 
process to exchange network messages with the 
(transport layer in the) operating system 

• Transport layer addressing
• <HostIP, Port>, called a socket

• Two important types of sockets
• UDP socket: TYPE is SOCK_DGRAM 
• TCP socket: TYPE is SOCK_STREAM



Ports

• 16-bit numbers that help distinguishing apps
• Packets carry src/dst port No. in transport header
• Well-known (0-1023) and ephemeral ports

• OS stores mapping between sockets and ports
• Port in packets and sockets in OS
• For UDP ports (SOCK_DGRAM)

• OS stores (local port, local IP address)  socket
• For TCP ports (SOCK_STREAM)

• OS stores (local port, local IP, remote port, remote IP) 
 socket



Multiplexing/demultiplexing

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:

process

socket
transport

application

physical
link
network

P2P1

transport

application

physical
link
network

P4
transport

application

physical
link
network

P3



How demultiplexing works

• host receives IP datagrams
 each datagram has source IP 

address, destination IP address
 each datagram carries one 

transport-layer segment
 each segment has source, 

destination port number 

• host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 
(payload)

other header fields

TCP/UDP segment format



Connectionless demultiplexing

• recall: created socket has host-
local port #:

     DatagramSocket mySocket1        
   = new DatagramSocket(12534);

• When host receives UDP 
segment:
 checks destination port # 

in segment
 directs UDP segment to 

socket with that port #

• recall: when creating datagram 
to send into UDP socket, must 
specify
 destination IP address
 destination port #

IP datagrams with same 
dest. port #, but different 
source IP addresses 
and/or source port 
numbers will be directed to 
same socket at dest.



Connectionless demux: example
DatagramSocket 
serverSocket = new 
DatagramSocket

 (6428);

DatagramSocket 
mySocket1 = new 
DatagramSocket 
(5775);

DatagramSocket 
mySocket2 = new 
DatagramSocket
 (9157);

transport

application

physical
link
network

P3
transport

application

physical
link
network

P1

transport

application

physical
link
network

P4

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?



Connection-oriented demux

• TCP socket identified by 4-
tuple: 
 source IP address
 source port number
 dest IP address
 dest port number

• demux: receiver uses all 
four values to direct 
segment to appropriate 
socket

• server host may support many 
simultaneous TCP sockets:
 each socket identified by its 

own 4-tuple

• web servers have different 
sockets for each connecting 
client
 non-persistent HTTP will 

have different socket for 
each request



Connection-oriented demux: example

three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets
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physical
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source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157host: IP 

address A
host: IP 
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C

network

P6P5
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source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: 
IP 
address 
B



Connection-oriented demux: example

transport

application

physical
link
network

P3
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physical
link

transport
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source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157host: IP 

address 
A

host: IP 
address 
C

server: 
IP 
address 
B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server



• Transport layer basics
• Design of reliable transport
• Designing a reliable transport protocol



Why a transport layer? 

• IP packets are addressed to a host but end-to-end 
communication is between application processes at  hosts
• Need a way to decide which packets go to which applications 

(mux/demux)

• IP provides a weak service model (best-effort)
• Packets can be corrupted, delayed, dropped, reordered, duplicated 
• No guidance on how much traffic to send and when
• Dealing with this is tedious for application developers



Reliable transport

@Sender
– Send packets

@Receiver
– Wait for packets

• In a perfect world, reliable transport is easy



Reliable transport

• All the bad things best-effort can do
 A packet is corrupted (bit errors)

 A packet is lost (why?)

 A packet is delayed (why?)

 Packets are reordered (why?)

 A packet is duplicated (why?)



Reliable transport

• Mechanisms for coping with bad events
 Checksums: to detect corruption
 ACKs: receiver tells sender that it received packet
 NACK: receiver tells sender it did not receive packet
 Sequence numbers: a way to identify packets
 Retransmissions: sender resends packets
 Timeouts: a way of deciding when to resend packets
 Forward error correction: a way to mask errors without 

retransmission
 Network encoding: an efficient way to repair errors



Dealing with packet corruption

TimeSender Receiver

1

2

2





ack

nack

• the question: how to recover from errors:
• acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
• sender retransmits pkt on receipt of NAK



Dealing with packet corruption 
What if the ACK/NACK is corrupted?

Time
Sender Receiver

1

1




ack(1)

ack(1)
Packet 

#1 or #2?

2 P(2)

P(1)

P(1)

Data and ACK packets carry sequence numbers



Dealing with packet loss
Timer-driven loss detection

Set timer when packet is sent; retransmit on timeout

Time
Sender Receiver

1

1



ack(1)

P(1)

P(1)

Timeout

P(2)



Dealing with packet loss (of ack)

Time
Sender Receiver

1

1


ack(1)

P(1)

P(1)

Timeout

P(2)

duplicate!



Dealing with packet loss
Timer-driven retransmission can lead to duplicates  

Time
Sender Receiver

1

.

.

.

1

ack(1)

P(1)

P(1)

Timeout

P(2) duplicate!

ack(1)



Components of a solution

• Checksums (to detect bit errors) 
• Timers (to detect loss)
• Acknowledgements (positive or negative)
• Sequence numbers (to deal with duplicates)



• Transport layer basics
• Design of reliable transport
• Designing a reliable transport protocol



A Solution: “Stop and Wait”

• A correct reliable transport protocol, but an 
extremely inefficient one

@Sender
 Send packet(I); (re)set 

timer; wait for ack
 If (ACK) 

 I++; repeat
 If (NACK or TIMEOUT)

 repeat

@Receiver
 Wait for packet
 If packet is OK, send 

ACK
 Else, send NACK
 Repeat



Stop & Wait is inefficient 

If (L/R<< RTT) then
Throughput ~ DATA/RTT

L: packet size
R: bandwidth of the link
RTT = 2*PropDelay: roundtrip time



Orders of magnitude
• e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

• U sender: utilization – fraction of time sender busy sending

 

U 
sender = 

.008 
30.008 

= 0.00027  
L / R 

RTT + L / R 
= 

• 33kB/sec throughput over 1 Gbps link!
• network protocol limits use of physical resources!

Dtrans =
L
R

 8000 bits
109 bits/sec

= = 8 microsecs

• if RTT=30 msec, 



Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver



Pipelining: increased utilization

first packet bit transmitted, t = 0
sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

 

U 
sender = 

.0024 
30.008 

= 0.00081  
3L / R 

RTT + L / R 
= 



Three design decisions

• Which packets can sender send?
 Sliding window

• How does receiver ack packets?
 Cumulative
 Selective

• Which packets does sender resend?
 Go-Back N (GBN)
 Selective Repeat (SR)



Sliding window

• Window = set of adjacent sequence numbers
 The size of the set is the window size; assume window size is n

• General idea: send up to n packets at a time 
 Sender can send packets in its window
 Receiver can accept packets in its window
 Window of acceptable packets “slides” on successful 

reception/acknowledgement
 Window contains all packets that might still be in transit

• Sliding window often called “packets in flight”



Sliding window

Cannot be received

• Let A be the last ack’d packet of sender without gap; then 
window of sender = {A+1, A+2, …, A+n}

• Let B be the last received packet without gap by receiver, 
then window of receiver = {B+1,…, B+n}

n
B

Received and ACK’d
Acceptable but not
yet received

n
A Already ACK’d

Sent but not ACK’d

Cannot be sent
sequence number 



Throughput of sliding window

• If window size is n, then throughput is roughly
 MIN(n*DATA/RTT, Link Bandwidth)

• Compare to Stop and Wait: Data/RTT

• What happens when n gets too large?



Acknowledgements w/ sliding window

• Two common options
Cumulative ACKs: ACK carries next in-

order sequence number that the receiver 
expects



Cumulative acknowledgements

n
B

Received and ACK’d
Acceptable but not
yet received
Cannot be received

• After receiving B+1, B+2
nBnew= B+2

• Receiver sends ACK(B+3) = ACK(Bnew+1)

• At receiver



Cumulative acknowledgements (cont’d)

n
B

Received and ACK’d
Acceptable but not
yet received
Cannot be received

• After receiving B+4, B+5
nB

• Receiver sends ACK(B+1)

• At receiver



Acknowledgements w/ sliding window

• Two common options
 Cumulative ACKs: ACK carries next in-order sequence 

number the receiver expects
 Selective ACKs: ACK individually acknowledges correctly 

received packets

• Selective ACKs offer more precise information but 
require more complicated book-keeping



Sliding window protocols

• Resending packets: two canonical approaches
Go-Back-N
Selective Repeat

• Many variants that differ in implementation 
details



Go-Back-N (GBN)

• Sender transmits up to n unacknowledged packets
• Receiver only accepts packets in order

 Discards out-of-order packets (i.e., packets other than B+1)
• Receiver uses cumulative acknowledgements

 i.e., sequence# in ACK = next expected in-order sequence# 
• Sender sets timer for 1st outstanding ack (A+1)
• If timeout, retransmit A+1, … , A+n



Sliding window with GBN

Cannot be received

• Let A be the last ack’d packet of sender without gap; 
then window of sender = {A+1, A+2, …, A+n}

• Let B be the last received packet without gap by 
receiver, then window of receiver = {B+1,…, B+n}

n
A Already ACK’d

Sent but not ACK’d

Cannot be sent

n
B Received and ACK’d

Acceptable but not
yet received

sequence number 



GBN example w/o errors

Time

Window size = 3 packets

Sender Receiver

1{1}
2{1, 2}
3{1, 2, 3}
4{2, 3, 4}
5{3, 4, 5}

Sender Window Receiver Window

6{4, 5, 6}
.
.
.

.

.

.



GBN example with errors

Time

Window size = 3 packets

Sender Receiver

Sender Window Receiver Window
1
2
3
4
5Timeout

Packet 4
6

456

Discard
Discard



Selective Repeat (SR)

• Sender: transmit up to n unacknowledged packets

• Assume packet k is lost, k+1 is not
 Receiver: indicates packet k+1 correctly received
 Sender: retransmit only packet k on timeout

• Efficient in retransmissions but complex book-keeping
 Need a timer per packet



SR example with errors
Window size = 3 packets

1{1}
2{1, 2}
3{1, 2, 3}
4{2, 3, 4}
5{3, 4, 5}

Sender Window Receiver Window

6{4, 5, 6}
ACK=5
ACK=6{4, 5, 6}

{4, 5, 6}

Timeout
Packet 4

4

ACK=4

7{7, 8, 9}
Sender Receiver

Buffered
Buffered



GBN vs. Selective Repeat

• When would GBN be better?
• When error rate is low; wastes bandwidth 

otherwise

• When would SR be better?
• When error rate is high; otherwise, too complex



Observations

• With sliding windows, it is possible to fully utilize a link, 
provided the window size is large enough. 

• Sender has to buffer all unacknowledged packets, because 
they may require retransmission

• Receiver may be able to accept out-of-order packets, but only 
up to its buffer limits

• Implementation complexity depends on protocol details (GBN 
vs. SR)



Components of a solution
• Checksums (for error detection) 
• Timers (for loss detection) 
• Acknowledgments 

 Cumulative 
 Selective

• Sequence numbers (duplicates, windows)
• Sliding windows (for efficiency) 
• Reliability protocols use the above to decide when 

and what to retransmit or acknowledge



提问

Q & A 


