
Queuing delay

• How long does a packet have to sit in a buffer before
it is processed?

Queueing delay: “pipe” view

Queueing delay: “pipe” view

No overload!

Queueing delay: “pipe” view

Transient Overload
Not a rare event!

Queue

Queueing delay: “pipe” view

Queue

Transient Overload

Queueing delay: “pipe” view

Queue

Transient Overload

Queueing delay: “pipe” view

Queue

Transient Overload

Queueing delay: “pipe” view

Queue

Transient Overload

Queueing delay: “pipe” view

Queue

Queueing delay

• How long does a packet have to sit in a buffer
before it is processed?

• Depends on traffic pattern
 Arrival rate at the queue
 Nature of arriving traffic (bursty or not?)
 Transmission rate of outgoing link

Queueing delay

• How long does a packet have to sit in a buffer
before it is processed?

• Characterized with statistical measures
 Average queuing delay
 Variance of queuing delay
 Probability delay exceeds a threshold value

Basic queueing theory terminology

• Arrival process: how packets arrive
 Average rate A
 Peak rate P

• W: average time packets wait in the queue
 W for “waiting time”

• L: average number of packets waiting in the queue
 L for “length of queue”

Little’s Law (1961)

• L = A x W

• Compute L: count packets in queue every second
 How often does a single packet get counted? W times

• Why do you care?
 Easy to compute L, harder to compute W

Processing Delay

• How long does the switch take to process a packet?
 Negligible

End-to-end delay

transmission
 propagation

queueing
processing

transmission
 propagation

queueing
processing

transmission
 propagation

Loss

• What fraction of the packets sent to a destination
are dropped?

Throughput

• At what rate is the destination receiving data from
the source

Throughput

F/R + propagation delay

Transmission rate R bits/sec

Average throughput =

Transfer time (T) =

File of size F bits

F/T ≈ R

Packets of size L bits

End-to-end throughput

Transmission rate R

File of size F bits
Packets of size L bits

Transmission rate R’ > R

Average throughput = min{R, R’} = R

bottleneck link

Internet Applications

• Internet Applications Overview
• Domain Name Service (DNS)
• Electronic Mail
• File Transfer Protocol (FTP)
• WWW and HTTP
• Content Distribution Networks (CDNs)

Internet Applications Overview
Application: communicating, distributed

processes
• e.g., Email, Web, P2P file sharing, instant

messaging
• Running in end systems (hosts)
• Exchange messages to implement application

Application-layer protocols
• One “piece” (agent) of an app
• Define messages exchanged by apps and

actions taken
• Use communication services provided by

lower layer protocols (TCP, UDP, RTP)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Typical Internet Applications

Application App-Layer Protocol Underlying Transport
Protocol

Email SMTP [RFC 2821] TCP
Remote terminal access Telnet [RFC 854] TCP

Web HTTP [RFC 2616] TCP
File transfer FTP [RFC 959] TCP

Streaming multimedia
Proprietary

e.g. RealNetworks
RTP, RTSP
TCP or UDP

Internet telephony
Proprietary
e.g. Dialpad

SIP on UDP

Jargons of Internet Applications

• Process: program running within a host
– Within same host, 2 processes communicate using inter-process

communication (defined by OS)
– Processes running in different hosts communicate with an app-layer

protocol

• User agent: interfaces with app “above” and network “below”
– Implements user interface & app-layer protocol, e.g.
– Web: browser, web server
– Email: mail reader, mail server
– Streaming audio/video: media player, media server

App-Layer Protocols

• Types of messages exchanged
– e.g. request & response messages

• Syntax of message types
– What fields in messages & how fields are delineated

• Semantics of the fields
– Meaning of information in fields

• Rules for when and how processes send & respond to
messages

Application Architectures

possible structure of applications:
• client-server (CS)
• peer-to-peer (P2P)

Client-Server Paradigm
Client:
• Start as required
• Initiates contact with server, “speaks first”

• Host may have dynamic IP addresses
• e.g. Web: client implemented in browser;

Email: in mail reader

Server:
• Run as daemon (always-on)
• Provides requested service to Client

• Host has permanent IP address
• e.g. Web server sends requested Web page,

mail server delivers Email

request

reply

Peer-to-Peer Paradigm

• No always-on server

• Arbitrary end systems directly communicate

• peers request service from other peers, provide
service in return to other peers

– self scalability – new peers bring new service
capacity, as well as new service demands

• Peers are intermittently connected and change
IP addresses

– Highly scalable but difficult to manage

• Examples: Gnutella, BitTorrent, Skype

peer-peer

Client-Server and P2P

Skype
• Voice-over-IP P2P

application

• Centralized server:
finding address of remote
party

• Direct client-client
connection

Instant messaging
• Chatting between two users is P2P

• Centralized service: user
presence detection/location

• User registers its IP address with
central server when it comes
online

• User contacts central server to
find IP addresses of parties

Typical Applications

• DNS
• Email
• FTP
• Web and HTTP
• CDN
• P2P Applications

Internet Applications

• Internet Applications Overview
• Domain Name Service (DNS)
• Electronic Mail
• File Transfer Protocol (FTP)
• WWW and HTTP
• Content Distribution Networks (CDNs)

Domain Name Service (DNS)
• Function

– Map “domain names” into IP addresses
– e.g. www.baidu.com  119.75.217.109

• Domain Name System
– Distributed database implemented in hierarchy of many name servers
– App-layer protocol host and name servers to communicate to resolve

“domain names”
– Load balancing: set of IP addresses for one server name

Q: why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized database
 maintenance

A: doesn’t scale!

Goals
• Uniqueness: no naming conflicts
• Scalable

 Many names and frequent updates (secondary)
• Distributed, autonomous administration

 Ability to update my own (machines’) names
 Don’t have to track everybody’s updates

• Highly available
• Lookups are fast
• Perfect consistency is a non-goal

How?

• Partition the namespace

• Distribute administration of each partition
Autonomy to update my own (machines’) names
Don’t have to track everybody’s updates

• Distribute name resolution for each partition

• How should we partition things?

Key idea: Hierarchy

• Three intertwined hierarchies
Hierarchical namespace

As opposed to original flat namespace
Hierarchically administered

As opposed to centralized
 (Distributed) hierarchy of servers

As opposed to centralized storage

Hierarchical namespace

• “Top Level Domains” are at the top
• Domains are subtrees
 e.g., .edu, umich.edu, eecs.umich.edu

• Name is leaf-to-root path
 cse.eecs.umich.edu

• Depth of tree is arbitrary (limit 128)
• Name collisions trivially avoided
 Each domain is responsible

root

edu com gov mil org net uk fr

umich berkeley

eecs law

cse

…

Hierarchical administration

 A zone corresponds to an administrative
authority that is responsible for that portion
of the hierarchy
 e.g., UMich controls names: *.umich.edu
 e.g., EECS controls names: *.eecs.umich.edu

root

edu com gov mil org net uk fr

umich berkeley

eecs law

cse

…

ICANN/IANA

Hierarchy of DNS Servers
• Root name servers

– Contacted by local name server that can not resolve name

• Top-level domain servers
– Responsible for com, org, net, edu, etc, and all top-level country domains,

e.g. cn, uk, fr

• Authoritative DNS servers
– Organization’s DNS servers, providing authoritative hostname to IP

mappings

• Local Name Servers
– Maintained by each residential ISP, company, university
– When host makes DNS query, query is sent to its local DNS server

• Each server stores a (small!) subset of the total DNS
database

• An authoritative DNS server stores “resource
records” for all DNS names in the domain that it has
authority for

• Each server needs to know other servers that are
responsible for the other portions of the hierarchy
– Every server knows the root
– Root server knows about all top-level domains

DNS: root name servers

• root name server:
– returns IP mappings of TLD servers

 13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
 (5 other sites)
b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA
 (41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

TLD, authoritative servers

• Top-level domain (TLD) servers:
– responsible for com, org, net, edu, aero, jobs, museums, and all

top-level country domains, e.g.: uk, fr, ca, jp
– Network Solutions maintains servers for .com TLD
– Educause for .edu TLD

• Authoritative DNS servers:
– organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
– can be maintained by organization or service provider

Local DNS name server

• Does not strictly belong to hierarchy

• Each ISP (residential ISP, company, university) has one
– also called “default name server”

• When host makes DNS query, query is sent to its local DNS
server
– has local cache of recent name-to-address translation pairs (but

may be out of date!)
– acts as proxy, forwards query into hierarchy

DNS Name Resolution Example

• Bob at cis.poly.edu wants
IP address for Alice at
gaia.cs.umass.edu

 Iterated query:
 Contacted server replies with

name of next server to
contact

 Host-Server: recursive query
 Server-Server: iterative query

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS
server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS
server

DNS Records
• A DNS resource record (RR)

RR format: (name, value, type, ttl)

 “Name” is the domain name, “type” denotes how “value” is
explained
 e.g. Name Server records (NS), Mail Exchangers (MX), Host IP

Address (A), Canonical name (CNAME)

 Examples
 (networkutopia.com, dns1.networkutopia.com, NS, 32768)
 (dns1.networkutopia.com, 212.212.212.1, A, 5600)

DNS protocol

• Query and Reply messages; both with the same
message format
• Header: identifier, flags, etc.

• Plus resource records

• See text/section for details

• Client–server interaction on UDP Port 53
• Spec supports TCP too, but not always implemented

Goals: Are we there yet?

• Uniqueness: No naming conflicts
• Scalable
• Distributed, autonomous administration
• Highly available?

Reliability

• Replicated DNS servers (primary/secondary)
 Name service available if at least one replica is up
 Queries can be load-balanced between replicas

• Usually, UDP used for queries
 Reliability, if needed, must be implemented on UDP

• Try alternate servers on timeout
 Exponential backoff when retrying same server

• Same identifier for all queries
 Don’t care which server responds

Goals: Are we there yet?

• Uniqueness: No naming conflicts
• Scalable
• Distributed, autonomous administration
• Highly available
• Fast lookups?

DNS caching

• Performing all these queries takes time
 Up to 1-second latency before starting download

• Caching can greatly reduce overhead
 The top-level servers very rarely change
 Popular sites (e.g., www.cnn.com) visited often
 Local DNS server often has the information cached

• How DNS caching works
 DNS servers cache responses to queries
 Responses include a “time to live” (TTL) field
 Server deletes cached entry after TTL expires

Attacking DNS
DDoS attacks
• 2002年10月，攻击者利用僵

尸网络向13个root服务器发
送大量ICMP报文
– 攻击并未奏效
– 大部分DNS根服务器执行分

组过滤，阻止ICMP报文
– 很多域名被本地缓存，可以

绕过根服务器得到解析
• 更有效的攻击应该向顶级域

名服务器发送大量DNS请求
（近年来较常见）

Redirect attacks
• Man-in-middle

– Intercept queries
• DNS poisoning

– Send bogus relies to DNS server,
which caches

– DNS污染（解决办法：修改host文件）

Exploit DNS for DDoS
• Send queries with spoofed source

address: target IP
• Requires amplification

Internet Applications

• Internet Applications Overview
• Domain Name Service (DNS)
• Electronic Mail
• File Transfer Protocol (FTP)
• WWW and HTTP
• Content Distribution Networks (CDNs)

Electronic Mail

• One of most heavily used apps on Internet

• SMTP: Simple Mail Transfer Protocol
– Delivery of simple text messages

• MIME: Multi-purpose Internet Mail Extension
– Delivery of other types of data, e.g. voice, images, video clips

• POP: Post Office Protocol
– Msg retrieval from server, including authorization and download

• IMAP: Internet Mail Access Protocol
– Manipulation of stored msgs on server

Components of Email System
User Agent
• Composing, editing, reading mail

messages
• e.g. Eudora, Outlook, Foxmail, Netscape

Messenger

• Outgoing, incoming mail messages
stored on server

Mail Servers (Host)
• Mailbox contains incoming mail

messages for user
• Message queue of outgoing mail

messages
• SMTP protocol between mail servers to

send mail messages

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

3 Stages of Mail Delivery
• 1st Stage

– Email goes from local user agent to the local SMTP server
– User agent acts as SMTP client
– Local server acts as SMTP server

• 2nd Stage
– Email is relayed by the local server to the remote SMTP server
– Local server acts as SMTP client now

• 3rd Stage
– The remote user agent uses a mail access protocol to access the mailbox

on remote server
– POP3 or IMAP4

Illustration of Mail Delivery

Pop3, IMAP4, or HTTP

RFC 822, MIME

A Mail Delivery Scenario
• 1) Alice uses UA to compose a mail message and to bob@someschool.edu
• 2) Alice’s UA sends mail to her mail server using SMTP, mail placed in

message queue

• 3) Client side of SMTP opens TCP connection with Bob’s mail server
• 4) SMTP client sends Alice’s mail over the TCP connection

• 5) Bob’s mail server places the mail in Bob’s mailbox
• 6) Bob invokes his UA to read the mail, e.g. by Pop3

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

SMTP

• RFC 821:
– Uses TCP, port 25
– Direct transfer: transfer Email message from client to server

– Needs info written on envelope of a mail (i.e. message header)
– May add log info to message header to show the path taken

• Does not cover format of mail messages or data
– Defined in RFC 822 or MIME
– Messages must be in 7-bit ASCII

SMTP Transaction

3 phases of transfer
• Handshaking (greeting)
• Transfer of one or more

mails data
• Close connection

Command/response interaction
 Commands: ASCII text
 Response: status code and phrase

Try SMTP interaction for yourself:

• telnet servername 25
• see 220 reply from server

• enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

above lets you send email without using email client (reader)

Reliability of SMTP

• Transfer mails from sender to receiver over TCP connection
– Rely on TCP to provide reliable service

• No guarantee to recover lost mails
• No end to end acknowledgement to originator (user)

• Error indication delivery not guaranteed
– Indicates mail has arrived at host, but not user

• Generally considered reliable

An Email Message
• Header lines, e.g.

– To: Alice@sina.com
– From: Bob@gmail.com
– Subject: Dinner tonight

• Body
– Mail contents, ASCII characters only

header

body

blank line

 Mail destinations

Mail Access Protocols
• SMTP: delivery/storage to receiver’s server
• Mail access protocol: mail retrieval from server
• POP: Post Office Protocol [RFC 1939]

– Authorization (agent <-->server) and download

• IMAP: Internet Mail Access Protocol [RFC 1730]
– more features, including manipulation of stored mails on server

• HTTP: gmail, Hotmail, Yahoo!, etc.

POP3 Protocol
Authorization phase
• Client commands

– user: declare username
– pass: password

• Server responses
– +OK
– -ERR

Transaction phase, by client
• list: list mail numbers
• retr: retrieve mail by number
• dele: delete
• quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

POP3 (more) and IMAP

more about POP3
• previous example uses POP3

“download and delete” mode
– Bob cannot re-read e-mail

if he changes client
• POP3 “download-and-keep”: copies

of messages on different clients
• POP3 is stateless across sessions

IMAP
• Internet Mail Access Protocol, RFC 1730
• keeps all messages in one place: at server

– A complicated use case
 Bob reads emails at his office while his wife is

simultaneously reading from same mailbox at
home

• allows user to organize messages in folders
• keeps user state across sessions:

– names of folders and mappings between
message IDs and folder name

– Keeps track of mail states (read, replied,
deleted)

RFC 822 – Format for Text Mails
• Simple 2-part format

– Header (envelope) includes
transmit and delivery info

– Lines of text in format keyword:
information value

– Body (contents) carries text of
message

– Header and body separated by a
blank line

• Mail is a sequence of lines of text
– Ends with two <CRLF>

From: John@hamburger.edu
To: Alice@crepes.fr
Cc: bob@hamburger.edu
Date: Wed, 4 Sep 2003 10:21:22 EST
Subject: Lunch with me

Alice,
 Can we get together for lunch when
you visit next week? I'm free on
Tuesday or Wednesday. Let me know
which day you would prefer.

John

MIME

• Multipurpose Internet Mail Extension
– Extends and automates encoding mechanisms
– Allows inclusion of separate components in a single mail

• e.g. programs, pictures, audio clips, videos

• Features
– Compatible with existing mail systems

• Everything encoded as 7-bit ASCII
• Headers and separators ignored by non-MIME mail systems

– MIME is extensible
• As long as sender and receiver agree on encoding scheme

Overview of MIME

• 5 new mail header fields
– MIME version
– Content type
– Content transfer encoding
– Content Id
– Content Description

• Number of content formats defined
• Transfer encoding defined

A MIME Mail Example

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

MIME version

Method used
to encode data

Type of data

encoded data

A Multi-Part Example
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="StartOfNextPart"

--StartOfNextPart
Dear Bob, Please find a picture of a crepe.
--StartOfNextPart
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data
.........................
......base64 encoded data
--StartOfNextPart
Do you want the recipe?
--StartOfNextPart--

Internet Applications

• Internet Applications Overview
• Domain Name Service (DNS)
• Electronic Mail
• File Transfer Protocol (FTP)
• WWW and HTTP
• Content Distribution Networks (CDNs)

File Transfer Protocol (FTP)
• RFC 959, use TCP, port 21/20
• Transfer file to/from remote host

• Client/Server model, client side initiates file transfer (either to/from
remote)

• Deals with heterogeneous OS and file systems
• Needs access control on remote file system

Control and Data Connections

• FTP client contacts FTP server at port 21, opens a control connection

• Client authorized over control connection
• Client browses remote directory by sending commands over control

connection

• When server receives file transfer command, server opens 2nd TCP data
connection (for file) to client

– One connection for each file transferred
• After transferring one file, server closes data connection

• Control connection stays “out of band”
• FTP server maintains “user state”: current directory, earlier authentication

Illustration of FTP Session

FTP Commands and Responses
Sample commands:
• Sent as ASCII text over control

channel

• USER username
• PASS password

• LIST return list of file in current
directory

• RETR filename retrieves (gets) file

• STOR filename stores (puts) file onto
remote server

Sample return codes:
• Status code and phrase (as in

HTTP)

• 331 Username OK, password
required

• 125 data connection already
open; transfer starting

• 425 Can’t open data connection

• 452 Error writing file

Internet Applications

• Internet Applications Overview
• Domain Name Service (DNS)
• Electronic Mail
• File Transfer Protocol (FTP)
• WWW and HTTP
• Content Distribution Networks (CDNs)

The Web: History

• World Wide Web (WWW): a distributed
database of “pages” linked through Hypertext
Transport Protocol (HTTP)
 First HTTP implementation – 1990

 Tim Berners-Lee at CERN
 HTTP/0.9 – 1991

 Simple GET command for the Web
 HTTP/1.0 – 1992

 Client/server information, simple caching

2016 Turing Award

https://en.wikipedia.org/wiki/Turing_Award

The Web: History

• World Wide Web (WWW): a distributed database
of “pages” linked through Hypertext Transport
Protocol (HTTP)
 HTTP/1.1 – 1996

 Performance and security optimizations
 HTTP/2 – 2015

 Latency optimizations via request multiplexing over single TCP
connection

 Binary protocol instead of text
 Server push

Web components

• Infrastructure:
 Clients
 Servers (DNS, CDN, Datacenters)

• Content:
 URL: naming content
 HTML: formatting content

• Protocol for exchanging information: HTTP

URL – Uniform Resource Locator

• A unique identifier for an object on WWW

• URL format
<protocol>://<host>:<port>/<path>?query_string
– Protocol: method for transmission or interpretation of the object, e.g.

http, ftp, Gopher
– Host: DNS name or IP address of the host where object resides

– Path: pathname of the file that contains the object
– Query_string: name/value pairs sent to app on the server

• An example
http://www.nju.edu.cn:8080/somedir/page.htm

Hyper Text Transfer Protocol
(HTTP)

• Client-server architecture
 Server is “always on” and “well known”

 Clients initiate contact to server

• Synchronous request/reply protocol
 Runs over TCP, Port 80

• Stateless
• ASCII format

 Before HTTP/2

PC running
Explorer

Server
running
Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

Steps in HTTP request/response
Client Server

TCP syn

TCP syn + ack

TCP ack + HTTP GET

...

Establish
connection

Request
response

Client
request

Close connection

Method types (HTTP 1.1)

• GET, HEAD
• POST

 Send information (e.g., web forms)
• PUT

 Uploads file in entity body to path specified in URL field
• DELETE

 Deletes file specified in the URL field

Client-to-server communication

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr
(blank line)

• HTTP Request Message
• Request line: method, resource, and protocol

version

request line

header
 lines

carriage return line feed
indicates end of message

Server-to-client communication
• HTTP Response Message

• Status line: protocol version, status code, status phrase
• Response headers: provide information
• Body: optional data

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Jan 2017 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 2006 ...
Content-Length: 6821
Content-Type: text/html
(blank line)
data data data data data ...

status line
(protocol, status code,
status phrase)

header lines

data
e.g., requested HTML file

HTTP is stateless

• Each request-response treated independently
 Servers not required to retain state

• Good: Improves scalability on the server-side
 Failure handling is easier
 Can handle higher rate of requests
 Order of requests doesn’t matter

• Bad: Some applications need persistent state
 Need to uniquely identify user or store temporary info
 e.g., Shopping cart, user profiles, usage tracking, …

Question

• How does a stateless protocol keep state?

State in a stateless protocol: Cookies
• Client-side state maintenance

 Client stores small state on behalf of server
 Client sends state in future requests to the server

• Can provide authentication
Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

DB

Store Cookie

A Cookies Example
Client Server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database

Application of Cookies
What cookies can bring
• Authorization
• Shopping carts

• Recommendations
• User session state (Web

Email)

Cookies and privacy
• Cookies permit servers to

learn a lot about user
• User may supply name

and Email to servers

• Search engines may use
cookies to obtain info
across sites

• Hacked browser may do
bad things with cookies

Web performance goals

• User
• Fast downloads (not identical to low-latency communication!)
• High availability

• Content provider
• Happy users (hence, above)
• Cost-effective infrastructure

• Network (secondary)
• Avoid overload

Solutions?

• User
• Fast downloads (not identical to low-latency communication!)
• High availability

• Content provider
• Happy users (hence, above)
• Cost-effective infrastructure

• Network (secondary)
• Avoid overload

Improve networking
protocols including
HTTP, TCP, etc.

Solutions?

• User
• Fast downloads (not identical to low-latency communication!)
• High availability

• Content provider
• Happy users (hence, above)
• Cost-effective infrastructure

• Network (secondary)
• Avoid overload

Caching and replication

Solutions?

• User
• Fast downloads (not identical to low-latency communication!)
• High availability

• Content provider
• Happy users (hence, above)
• Cost-effective infrastructure

• Network (secondary)
• Avoid overload

Exploit economies of scale;
e.g., webhosting, CDNs,
datacenters

HTTP performance

• Most Web pages have multiple objects
 e.g., HTML file and a bunch of embedded images

• How do you retrieve those objects (naively)?
 One item at a time

• New TCP connection per (small) object!

HTTP performance: Object request response
time

• RTT (round-trip time)
 Time for a small packet to travel

from client to server and back

• Response time
 1 RTT for TCP setup
 1 RTT for HTTP request and first

few bytes
 Transmission time
 Total = 2RTT + Transmission Time

Client Server
TCP syn

TCP syn + ack

TCP ack + HTTP GET

RTT

RTT

Tx

Non-persistent connections

• Default in HTTP/1.0
• 2RTT+△ for each object in the HTML file!

 One more 2RTT+△ for the HTML file itself

• Doing the same thing over and over again
 Inefficient

Concurrent requests and responses

• Use multiple connections in
parallel

• Does not necessarily
maintain order of responses

 Client = 
 Content provider = 
 Network =  Why?

R1
R2 R3

T1

T2 T3

Client

Server

Persistent connections

• Maintain TCP connection across multiple requests
 Including transfers subsequent to current page
 Client or server can tear down connection

• Advantages
 Avoid overhead of connection set-up and tear-down
 Allow underlying layers (e.g., TCP) to learn about RTT and

bandwidth characteristics
• Default in HTTP/1.1

Pipelined requests & responses

• Batch requests and
responses to reduce the
number of packets

• Multiple requests can be
contained in one TCP
segment

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Scorecard: Getting n small objects

• Time dominated by latency

• One-at-a-time: ~2n RTT
• m concurrent: ~2[n/m] RTT
• Persistent: ~ (n+1)RTT
• Pipelined: ~2 RTT
• Pipelined/Persistent: ~2 RTT first time, RTT later

Scorecard: Getting n large objects each of
size F

• Time dominated by bandwidth

• One-at-a-time: ~ nF/B
• m concurrent: ~ [n/m] F/B

 Assuming shared with large population of users and each
TCP connection gets the same bandwidth

• Pipelined and/or persistent: ~ nF/B
 The only thing that helps is getting more bandwidth

Caching

• Why does caching work?
 Exploits locality of reference

• How well does caching work?
 Very well, up to a limit
 Large overlap in content
 But many unique requests

A universal story!
 Effectiveness of caching grows logarithmically with size

Caching: How

• Modifier to GET requests:
• If-modified-since – returns “not modified” if

resource not modified since specified time

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
If-modified-since: Wed, 18 Jan 2017 10:25:50 GMT
(blank line)

Caching: How

• Modifier to GET requests:
 If-modified-since – returns “not modified” if resource not

modified since specified time

• Client specifies “if-modified-since” time in request

• Server compares this against “last modified” time of
resource

• Server returns “Not Modified” if resource has not changed

• …. or a “OK” with the latest version otherwise

Caching: How

• Modifier to GET requests:
 If-modified-since – returns “not modified” if resource not

modified since specified time

• Response header:
 Expires – how long it’s safe to cache the resource

 No-cache – ignore all caches; always get resource directly
from server

Caching: Where?

• Options
Client (browser)
Forward proxies
Reverse proxies
Content Distribution Network

Caching: Where?
• Many clients transfer same information

• Generate unnecessary server and network load
• Clients experience unnecessary latency

Server

Clients

Tier-1 ISP

ISP-1 ISP-2

Caching with Reverse Proxies
• Cache documents close to server

• Decrease server load
• By content provider

Clients

Tier-1 ISP

ISP-1 ISP-2

Reverse proxies

Caching with Forward Proxies
• Cache documents close to clients

• Reduce network traffic and decrease latency
• By ISPs or enterprises

Clients

Tier-1 ISP

ISP-1 ISP-2

Reverse proxies

Forward proxies

• HTTP/1.1
 Text-based protocol
 Being replaced by binary HTTP/2 protocol

• Many ways to improve performance
 Pipelining and batching
 Caching in proxies and CDNs
 Datacenters

Internet Applications

• Internet Applications Overview
• Domain Name Service (DNS)
• Electronic Mail
• File Transfer Protocol (FTP)
• WWW and HTTP
• Content Distribution Networks (CDNs)

Content Distribution Networks
(CDNs)

• Challenge
– Stream large files (e.g. video)

from single origin server in real
time

– Protect origin server from DDOS
attacks

• Solution
– Replicate content at hundreds of

servers throughout Internet
– CDN distribution node coordinate

the content distribution
– Placing content close to user

Origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

Content Replication

• Content provider (origin server) is CDN customer

• CDN replicates customers’ content in CDN servers

• When provider updates content, CDN updates its
servers

• Use authoritative DNS server to redirect requests

Supporting Techniques
• DNS

– One name maps onto many addresses

• Routing
– Content-based routing (to nearest CDN server)

• URL Rewriting
– Replaces “http://www.sina.com/sports/tennis.mov” with

“http://www.cdn.com/www.sina.com/sports/tennis.mov”

• Redirection strategy
– Load balancing, network delay, cache/content locality

CDN Operation

1’ URL rewriting – get
authoritative server

1. Get near CDN server IP
address

2. Warm up CDN cache

3. Retrieve pages/media from
CDN Server

Client Origin Server

CDN authoritative
ServerCDN Server

1

1

3 2

Redirection

• CDN creates a “map”, indicating distances from
leaf ISPs and CDN servers

• When query arrives at authoritative DNS server
– Server determines ISP from which query originates
– Uses “map” to determine best CDN server

• CDN servers create an application-layer overlay
network

提问

Q & A

